Loading…
Automatic quantification of IHC stain in breast TMA using colour analysis
Abstract Immunohistochemical (IHC) biomarkers in breast tissue microarray (TMA) samples are used daily in pathology departments. In recent years, automatic methods to evaluate positive staining have been investigated since they may save time and reduce errors in the diagnosis. These errors are mostl...
Saved in:
Published in: | Computerized medical imaging and graphics 2017-11, Vol.61, p.14-27 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Immunohistochemical (IHC) biomarkers in breast tissue microarray (TMA) samples are used daily in pathology departments. In recent years, automatic methods to evaluate positive staining have been investigated since they may save time and reduce errors in the diagnosis. These errors are mostly due to subjective evaluation. The aim of this work is to develop a density tool able to automatically quantify the positive brown IHC stain in breast TMA for different biomarkers. To avoid the problem of colour variation and make a robust tool independent of the staining process, several colour standardization methods have been analysed. Four colour standardization methods have been compared against colour model segmentation. The standardization methods have been compared by means of NBS colour distance. The use of colour standardization helps to reduce noise due to stain and histological sample preparation. However, the most reliable and robust results have been obtained by combining the HSV and RGB colour models for segmentation with the HSB channels. The segmentation provides three outputs based on three saturation values for weak, medium and strong staining. Each output image can be combined according to the type of biomarker staining. The results with 12 biomarkers were evaluated and compared to the segmentation and density calculation done by expert pathologists. The Hausdorff distance, sensitivity and specificity have been used to quantitative validate the results. The tests carried out with 8000 TMA images provided an average of 95.94% accuracy applied to the total tissue cylinder area. Colour standardization was used only when the tissue core had blurring and fading stain and the expert could not evaluate them without a pre-processing. |
---|---|
ISSN: | 0895-6111 1879-0771 |
DOI: | 10.1016/j.compmedimag.2017.06.002 |