Loading…
Optical Emission in Hexagonal SiGe Nanowires
Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexa...
Saved in:
Published in: | Nano letters 2017-08, Vol.17 (8), p.4753-4758 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-c9ef6b9e35611f3f76ad4ea7a04ee3d8c22e8b4985c0c09287fcf764bc16ff153 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-c9ef6b9e35611f3f76ad4ea7a04ee3d8c22e8b4985c0c09287fcf764bc16ff153 |
container_end_page | 4758 |
container_issue | 8 |
container_start_page | 4753 |
container_title | Nano letters |
container_volume | 17 |
creator | Cartoixà, Xavier Palummo, Maurizia Hauge, Håkon Ikaros T Bakkers, Erik P. A. M Rurali, Riccardo |
description | Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si. |
doi_str_mv | 10.1021/acs.nanolett.7b01441 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1914581112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914581112</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-c9ef6b9e35611f3f76ad4ea7a04ee3d8c22e8b4985c0c09287fcf764bc16ff153</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmPwDxDqkQMdcZK2yRFNY0Oa2AE4R2nmoE5dO5JWwL8n0z6OnGxZz2tbDyG3QMdAGTwaG8aNadoau25clBSEgDMyhIzTNFeKnZ96KQbkKoQ1pVTxjF6SAZN5JpjiQ_Kw3HaVNXUy3VQhVG2TVE0yxx_z2TZx-lbNMHmNV74rj-GaXDhTB7w51BH5eJ6-T-bpYjl7mTwtUsOF7FKr0OWlQp7lAI67IjcrgaYwVCDylbSMoSyFkpmlliomC2cjJEoLuXPx6RG53-_d-varx9Dp-JzFujYNtn3QoEBkEgBYRMUetb4NwaPTW19tjP_VQPXOk46e9NGTPniKsbvDhb7c4OoUOoqJAN0Du_i67X20Ef7f-Qdp8Hbt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914581112</pqid></control><display><type>article</type><title>Optical Emission in Hexagonal SiGe Nanowires</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Cartoixà, Xavier ; Palummo, Maurizia ; Hauge, Håkon Ikaros T ; Bakkers, Erik P. A. M ; Rurali, Riccardo</creator><creatorcontrib>Cartoixà, Xavier ; Palummo, Maurizia ; Hauge, Håkon Ikaros T ; Bakkers, Erik P. A. M ; Rurali, Riccardo</creatorcontrib><description>Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b01441</identifier><identifier>PMID: 28654293</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2017-08, Vol.17 (8), p.4753-4758</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-c9ef6b9e35611f3f76ad4ea7a04ee3d8c22e8b4985c0c09287fcf764bc16ff153</citedby><cites>FETCH-LOGICAL-a348t-c9ef6b9e35611f3f76ad4ea7a04ee3d8c22e8b4985c0c09287fcf764bc16ff153</cites><orcidid>0000-0002-8264-6862 ; 0000-0002-4086-4191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28654293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cartoixà, Xavier</creatorcontrib><creatorcontrib>Palummo, Maurizia</creatorcontrib><creatorcontrib>Hauge, Håkon Ikaros T</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M</creatorcontrib><creatorcontrib>Rurali, Riccardo</creatorcontrib><title>Optical Emission in Hexagonal SiGe Nanowires</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEYmPwDxDqkQMdcZK2yRFNY0Oa2AE4R2nmoE5dO5JWwL8n0z6OnGxZz2tbDyG3QMdAGTwaG8aNadoau25clBSEgDMyhIzTNFeKnZ96KQbkKoQ1pVTxjF6SAZN5JpjiQ_Kw3HaVNXUy3VQhVG2TVE0yxx_z2TZx-lbNMHmNV74rj-GaXDhTB7w51BH5eJ6-T-bpYjl7mTwtUsOF7FKr0OWlQp7lAI67IjcrgaYwVCDylbSMoSyFkpmlliomC2cjJEoLuXPx6RG53-_d-varx9Dp-JzFujYNtn3QoEBkEgBYRMUetb4NwaPTW19tjP_VQPXOk46e9NGTPniKsbvDhb7c4OoUOoqJAN0Du_i67X20Ef7f-Qdp8Hbt</recordid><startdate>20170809</startdate><enddate>20170809</enddate><creator>Cartoixà, Xavier</creator><creator>Palummo, Maurizia</creator><creator>Hauge, Håkon Ikaros T</creator><creator>Bakkers, Erik P. A. M</creator><creator>Rurali, Riccardo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><orcidid>https://orcid.org/0000-0002-4086-4191</orcidid></search><sort><creationdate>20170809</creationdate><title>Optical Emission in Hexagonal SiGe Nanowires</title><author>Cartoixà, Xavier ; Palummo, Maurizia ; Hauge, Håkon Ikaros T ; Bakkers, Erik P. A. M ; Rurali, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-c9ef6b9e35611f3f76ad4ea7a04ee3d8c22e8b4985c0c09287fcf764bc16ff153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cartoixà, Xavier</creatorcontrib><creatorcontrib>Palummo, Maurizia</creatorcontrib><creatorcontrib>Hauge, Håkon Ikaros T</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M</creatorcontrib><creatorcontrib>Rurali, Riccardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartoixà, Xavier</au><au>Palummo, Maurizia</au><au>Hauge, Håkon Ikaros T</au><au>Bakkers, Erik P. A. M</au><au>Rurali, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Emission in Hexagonal SiGe Nanowires</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-08-09</date><risdate>2017</risdate><volume>17</volume><issue>8</issue><spage>4753</spage><epage>4758</epage><pages>4753-4758</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28654293</pmid><doi>10.1021/acs.nanolett.7b01441</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><orcidid>https://orcid.org/0000-0002-4086-4191</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2017-08, Vol.17 (8), p.4753-4758 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1914581112 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Optical Emission in Hexagonal SiGe Nanowires |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Emission%20in%20Hexagonal%20SiGe%20Nanowires&rft.jtitle=Nano%20letters&rft.au=Cartoixa%CC%80,%20Xavier&rft.date=2017-08-09&rft.volume=17&rft.issue=8&rft.spage=4753&rft.epage=4758&rft.pages=4753-4758&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b01441&rft_dat=%3Cproquest_cross%3E1914581112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-c9ef6b9e35611f3f76ad4ea7a04ee3d8c22e8b4985c0c09287fcf764bc16ff153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1914581112&rft_id=info:pmid/28654293&rfr_iscdi=true |