Loading…

Transition Metal Ions Enable the Transition from Electrospun Prolamin Protein Fibers to Nitrogen-Doped Freestanding Carbon Films for Flexible Supercapacitors

Flexible carbon ultrafine fibers are highly desirable in energy storage and conversion devices. Our previous finding showed that electrospun hordein/zein fibers stabilized by Ca2+ were successfully transferred into nitrogen-doped carbon ultrafine fibers for supercapacitors. However, their relatively...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2017-07, Vol.9 (28), p.23731-23740
Main Authors: Wang, Yixiang, Yang, Jingqi, Du, Rongbing, Chen, Lingyun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flexible carbon ultrafine fibers are highly desirable in energy storage and conversion devices. Our previous finding showed that electrospun hordein/zein fibers stabilized by Ca2+ were successfully transferred into nitrogen-doped carbon ultrafine fibers for supercapacitors. However, their relatively brittle nature needed to be improved. Inspired by this stabilizing effect of Ca2+, in this work, four transition metal divalent cations were used to assist the formation of flexible hordein/zein-derived carbon ultrafine fibers. Without alteration of the electrospinnability, adequate amounts of zinc acetate and cobalt acetate supported the fibrous structure during pyrolysis. This resulted in flexible freestanding carbon films consisting of well-defined fibers with nitrogen-doped graphitic layers and hierarchical pores. These carbon films were easily cut into small square pieces and directly applied as working electrode in the three-electrode testing system without the need for polymer binders or conducting agents. Notably, the hz-Zn0.3-p electrode, synthesized with 0.3 mol/L Zn2+ and post-acid treatment, exhibited a specific capacitance of 393 F/g (at 1 A/g), a large rate capability (72.3% remained at 20 A/g), and a capacitance retention of ∼98% after 2000 charging–discharging cycles at 10 A/g. These superior electrochemical properties were attributed to the synergistic effects of the well-developed graphitic layers induced by Zn2+, the nitrogen-decorated carbon structure, and the interconnected channels generated by HCl treatment. This research advances potential applications for prolamin proteins as nitrogen-containing raw materials in developing carbon structures for high-performance supercapacitors.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b05159