Loading…
A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II)
We report a highly sensitive and selective strategy for Cd(II) assay using a singly labeled multifunctional probe consisting of a Cd(II)-specific aptamer (CAP), which acted as a recognition element for Cd(II) and a signal reporter. The presence of Cd(II) can induce the conformational switching of th...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2017-08, Vol.409 (21), p.4951-4958 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a highly sensitive and selective strategy for Cd(II) assay using a singly labeled multifunctional probe consisting of a Cd(II)-specific aptamer (CAP), which acted as a recognition element for Cd(II) and a signal reporter. The presence of Cd(II) can induce the conformational switching of the CAP, accompanied by a change in fluorescence intensity. Thereby, a fluorescence strategy for Cd(II) assay was established. The proposed method has a detection limit of 2.15 nM, which is much lower than the detection limits reported in related literature. This strategy involves only an aptamer probe, and the use of such a G
4
-based quencher avoids the dual labeling of the CAP with fluorophore/quencher units. It is obviously more convenient and economical than the other aptamer-based biosensors for Cd(II) detection. The mechanism by which Cd(II) induces the CAP to change from a random coil sequence to a stem-loop structure was studied in a series of control experiments. This strategy would be helpful in the design of a sensitive analytical platform for various target assays in environmental and biomedical fields.
Graphical Abstract
The presence of Cd
2+
leads to the conformational change of CAP from a random coil sequence to a stem-loop structure, resulting in a quenching in the fluorescence |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-017-0436-1 |