Loading…
Palladium-Mediated Synthesis of a Near-Infrared Fluorescent K+ Sensor
Potassium (K+) exits electrically excitable cells during normal and pathophysiological activity. Currently, K+-sensitive electrodes and electrical measurements are the primary tools to detect K+ fluxes. Here, we describe the synthesis of a near-IR, oxazine fluorescent K+ sensor (KNIR-1) with a disso...
Saved in:
Published in: | Journal of organic chemistry 2017-08, Vol.82 (15), p.8199-8205 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Potassium (K+) exits electrically excitable cells during normal and pathophysiological activity. Currently, K+-sensitive electrodes and electrical measurements are the primary tools to detect K+ fluxes. Here, we describe the synthesis of a near-IR, oxazine fluorescent K+ sensor (KNIR-1) with a dissociation constant suited for detecting changes in intracellular and extracellular K+ concentrations. KNIR-1 treatment of cells expressing voltage-gated K+ channels enabled the visualization of intracellular K+ depletion upon channel opening and restoration of cytoplasmic K+ after channel closing. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.7b00845 |