Loading…
Time Strengthening of Crystal Nanocontacts
We demonstrate how an exponentially saturating increase of the contact area between a nanoasperity and a crystal surface, occurring on time scales governed by the Arrhenius equation, is consistent with measurements of the static friction and lateral contact stiffness on a model alkali-halide surface...
Saved in:
Published in: | Physical review letters 2017-06, Vol.118 (24), p.246101-246101, Article 246101 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate how an exponentially saturating increase of the contact area between a nanoasperity and a crystal surface, occurring on time scales governed by the Arrhenius equation, is consistent with measurements of the static friction and lateral contact stiffness on a model alkali-halide surface at different temperatures in ultrahigh vacuum. The "contact ageing" effect is attributed to atomic attrition and is eventually broken by thermally activated slip of the nanoasperity on the surface. The combination of the two effects also leads to regions of strengthening and weakening in the velocity dependence of the friction, which are well-reproduced by an extended version of the Prandtl-Tomlinson model. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.118.246101 |