Loading…
trans-Polydatin protects the mouse heart against ischemia/reperfusion injury via inhibition of the renin-angiotensin system (RAS) and Rho kinase (ROCK) activity
Recent studies highlighted the protective benefits of a Chinese herb extract from polygonum cuspidatum, trans-polydatin, on cardiac disease. We investigated the therapeutic effect of trans-polydatin on myocardial ischemia/reperfusion (IR) injury and the underlying mechanisms related to the renin-ang...
Saved in:
Published in: | Food & function 2017-06, Vol.8 (6), p.2309-2321 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent studies highlighted the protective benefits of a Chinese herb extract from polygonum cuspidatum, trans-polydatin, on cardiac disease. We investigated the therapeutic effect of trans-polydatin on myocardial ischemia/reperfusion (IR) injury and the underlying mechanisms related to the renin-angiotensin system (RAS) and RhoA kinase (ROCK) pathway.
Experiments were performed on neonatal rats' ventricular myocytes that were subjected to hypoxia-reoxygenation (simulated IR, SIR) and on adult mice which were subjected to left anterior descending coronary artery occlusion for 45 min followed by a one-week reperfusion. trans-Polydatin significantly increased cell viability and reduced apoptosis in SIR cardiomyocytes. It was also observed to reduce the infarct size and increase the cardiac function in IR mice. trans-Polydatin decreased the expression of angiotensin and inhibited the activities of renin and angiotensin-converting enzyme. Furthermore, trans-polydatin inhibited ROCK activity, especially the angiotensin I receptor-activated ROCK pathway.
trans-Polydatin exerts a cardio-protection against myocardial IR injury likely through inhibiting both RAS and the downstream ROCK pathway. |
---|---|
ISSN: | 2042-6496 2042-650X |
DOI: | 10.1039/c6fo01842d |