Loading…
The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain
The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in th...
Saved in:
Published in: | Neurochemical research 2018, Vol.43 (1), p.110-115 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3 |
container_end_page | 115 |
container_issue | 1 |
container_start_page | 110 |
container_title | Neurochemical research |
container_volume | 43 |
creator | Kitayama, Tomoya |
description | The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K
+
-Cl
−
-cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury. |
doi_str_mv | 10.1007/s11064-017-2344-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1916381306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985003184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4Mouq4-gBcpeBEkOsm0SXOUxX-4qMh6Dmk31S7dZk3ag2_g2Uf0Scyyq4jgaQ7z_X4zfIQcMDhlAPIsMAYipcAk5ZimFDfIgGUSqVCAm2QAGLfIFOyQ3RBmADHF2TbZ4bmQErgakHzyYpNH19jEVcntCR01n-8fdOQ6b9qwcL6znvKkbpM723u3MN1LXSYPpm73yFZlmmD313NIni4vJqNrOr6_uhmdj2mJkne04jmXsiihTE0qlMiKohApAk4FoOJSZVyhKCqwqqhshgAZZ5WpZI55IUqDQ3K86l1499rb0Ol5HUrbNKa1rg-aKSYwZwgiokd_0JnrfRu_i1SeASDL00ixFVV6F4K3lV74em78m2agl1r1SquOWvVSq8aYOVw398XcTn8S3x4jwFdAiKv22fpfp_9t_QLzcH9K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985003184</pqid></control><display><type>article</type><title>The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain</title><source>Springer Nature</source><creator>Kitayama, Tomoya</creator><creatorcontrib>Kitayama, Tomoya</creatorcontrib><description>The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K
+
-Cl
−
-cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-017-2344-3</identifier><identifier>PMID: 28677029</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biochemistry ; Biomedicine ; Cell Biology ; Chlorides ; GABAergic Neurons - metabolism ; Humans ; K Cl- Cotransporters ; Low level ; Neuralgia - metabolism ; Neuralgia - physiopathology ; Neurochemistry ; Neurology ; Neurosciences ; Original Paper ; Pain ; Peripheral Nerve Injuries - metabolism ; Peripheral Nerve Injuries - physiopathology ; Peripheral neuropathy ; Potassium ; Potassium-chloride cotransporter ; Spinal cord ; Spinal Cord - metabolism ; Spinal Cord - physiopathology ; Symporters - metabolism ; Synaptic Transmission - genetics ; γ-Aminobutyric acid</subject><ispartof>Neurochemical research, 2018, Vol.43 (1), p.110-115</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Neurochemical Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3</citedby><cites>FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28677029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitayama, Tomoya</creatorcontrib><title>The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K
+
-Cl
−
-cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Chlorides</subject><subject>GABAergic Neurons - metabolism</subject><subject>Humans</subject><subject>K Cl- Cotransporters</subject><subject>Low level</subject><subject>Neuralgia - metabolism</subject><subject>Neuralgia - physiopathology</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Pain</subject><subject>Peripheral Nerve Injuries - metabolism</subject><subject>Peripheral Nerve Injuries - physiopathology</subject><subject>Peripheral neuropathy</subject><subject>Potassium</subject><subject>Potassium-chloride cotransporter</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal Cord - physiopathology</subject><subject>Symporters - metabolism</subject><subject>Synaptic Transmission - genetics</subject><subject>γ-Aminobutyric acid</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQh4Mouq4-gBcpeBEkOsm0SXOUxX-4qMh6Dmk31S7dZk3ag2_g2Uf0Scyyq4jgaQ7z_X4zfIQcMDhlAPIsMAYipcAk5ZimFDfIgGUSqVCAm2QAGLfIFOyQ3RBmADHF2TbZ4bmQErgakHzyYpNH19jEVcntCR01n-8fdOQ6b9qwcL6znvKkbpM723u3MN1LXSYPpm73yFZlmmD313NIni4vJqNrOr6_uhmdj2mJkne04jmXsiihTE0qlMiKohApAk4FoOJSZVyhKCqwqqhshgAZZ5WpZI55IUqDQ3K86l1499rb0Ol5HUrbNKa1rg-aKSYwZwgiokd_0JnrfRu_i1SeASDL00ixFVV6F4K3lV74em78m2agl1r1SquOWvVSq8aYOVw398XcTn8S3x4jwFdAiKv22fpfp_9t_QLzcH9K</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kitayama, Tomoya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>2018</creationdate><title>The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain</title><author>Kitayama, Tomoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Chlorides</topic><topic>GABAergic Neurons - metabolism</topic><topic>Humans</topic><topic>K Cl- Cotransporters</topic><topic>Low level</topic><topic>Neuralgia - metabolism</topic><topic>Neuralgia - physiopathology</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Pain</topic><topic>Peripheral Nerve Injuries - metabolism</topic><topic>Peripheral Nerve Injuries - physiopathology</topic><topic>Peripheral neuropathy</topic><topic>Potassium</topic><topic>Potassium-chloride cotransporter</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal Cord - physiopathology</topic><topic>Symporters - metabolism</topic><topic>Synaptic Transmission - genetics</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitayama, Tomoya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitayama, Tomoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2018</date><risdate>2018</risdate><volume>43</volume><issue>1</issue><spage>110</spage><epage>115</epage><pages>110-115</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K
+
-Cl
−
-cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28677029</pmid><doi>10.1007/s11064-017-2344-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-3190 |
ispartof | Neurochemical research, 2018, Vol.43 (1), p.110-115 |
issn | 0364-3190 1573-6903 |
language | eng |
recordid | cdi_proquest_miscellaneous_1916381306 |
source | Springer Nature |
subjects | Animals Biochemistry Biomedicine Cell Biology Chlorides GABAergic Neurons - metabolism Humans K Cl- Cotransporters Low level Neuralgia - metabolism Neuralgia - physiopathology Neurochemistry Neurology Neurosciences Original Paper Pain Peripheral Nerve Injuries - metabolism Peripheral Nerve Injuries - physiopathology Peripheral neuropathy Potassium Potassium-chloride cotransporter Spinal cord Spinal Cord - metabolism Spinal Cord - physiopathology Symporters - metabolism Synaptic Transmission - genetics γ-Aminobutyric acid |
title | The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20K+-Cl%E2%88%92-Cotransporter-2%20in%20Neuropathic%20Pain&rft.jtitle=Neurochemical%20research&rft.au=Kitayama,%20Tomoya&rft.date=2018&rft.volume=43&rft.issue=1&rft.spage=110&rft.epage=115&rft.pages=110-115&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-017-2344-3&rft_dat=%3Cproquest_cross%3E1985003184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1985003184&rft_id=info:pmid/28677029&rfr_iscdi=true |