Loading…

The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain

The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in th...

Full description

Saved in:
Bibliographic Details
Published in:Neurochemical research 2018, Vol.43 (1), p.110-115
Main Author: Kitayama, Tomoya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3
cites cdi_FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3
container_end_page 115
container_issue 1
container_start_page 110
container_title Neurochemical research
container_volume 43
creator Kitayama, Tomoya
description The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K + -Cl − -cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury.
doi_str_mv 10.1007/s11064-017-2344-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1916381306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985003184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4Mouq4-gBcpeBEkOsm0SXOUxX-4qMh6Dmk31S7dZk3ag2_g2Uf0Scyyq4jgaQ7z_X4zfIQcMDhlAPIsMAYipcAk5ZimFDfIgGUSqVCAm2QAGLfIFOyQ3RBmADHF2TbZ4bmQErgakHzyYpNH19jEVcntCR01n-8fdOQ6b9qwcL6znvKkbpM723u3MN1LXSYPpm73yFZlmmD313NIni4vJqNrOr6_uhmdj2mJkne04jmXsiihTE0qlMiKohApAk4FoOJSZVyhKCqwqqhshgAZZ5WpZI55IUqDQ3K86l1499rb0Ol5HUrbNKa1rg-aKSYwZwgiokd_0JnrfRu_i1SeASDL00ixFVV6F4K3lV74em78m2agl1r1SquOWvVSq8aYOVw398XcTn8S3x4jwFdAiKv22fpfp_9t_QLzcH9K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985003184</pqid></control><display><type>article</type><title>The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain</title><source>Springer Nature</source><creator>Kitayama, Tomoya</creator><creatorcontrib>Kitayama, Tomoya</creatorcontrib><description>The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K + -Cl − -cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-017-2344-3</identifier><identifier>PMID: 28677029</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biochemistry ; Biomedicine ; Cell Biology ; Chlorides ; GABAergic Neurons - metabolism ; Humans ; K Cl- Cotransporters ; Low level ; Neuralgia - metabolism ; Neuralgia - physiopathology ; Neurochemistry ; Neurology ; Neurosciences ; Original Paper ; Pain ; Peripheral Nerve Injuries - metabolism ; Peripheral Nerve Injuries - physiopathology ; Peripheral neuropathy ; Potassium ; Potassium-chloride cotransporter ; Spinal cord ; Spinal Cord - metabolism ; Spinal Cord - physiopathology ; Symporters - metabolism ; Synaptic Transmission - genetics ; γ-Aminobutyric acid</subject><ispartof>Neurochemical research, 2018, Vol.43 (1), p.110-115</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Neurochemical Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3</citedby><cites>FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28677029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitayama, Tomoya</creatorcontrib><title>The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K + -Cl − -cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Chlorides</subject><subject>GABAergic Neurons - metabolism</subject><subject>Humans</subject><subject>K Cl- Cotransporters</subject><subject>Low level</subject><subject>Neuralgia - metabolism</subject><subject>Neuralgia - physiopathology</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Pain</subject><subject>Peripheral Nerve Injuries - metabolism</subject><subject>Peripheral Nerve Injuries - physiopathology</subject><subject>Peripheral neuropathy</subject><subject>Potassium</subject><subject>Potassium-chloride cotransporter</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal Cord - physiopathology</subject><subject>Symporters - metabolism</subject><subject>Synaptic Transmission - genetics</subject><subject>γ-Aminobutyric acid</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQh4Mouq4-gBcpeBEkOsm0SXOUxX-4qMh6Dmk31S7dZk3ag2_g2Uf0Scyyq4jgaQ7z_X4zfIQcMDhlAPIsMAYipcAk5ZimFDfIgGUSqVCAm2QAGLfIFOyQ3RBmADHF2TbZ4bmQErgakHzyYpNH19jEVcntCR01n-8fdOQ6b9qwcL6znvKkbpM723u3MN1LXSYPpm73yFZlmmD313NIni4vJqNrOr6_uhmdj2mJkne04jmXsiihTE0qlMiKohApAk4FoOJSZVyhKCqwqqhshgAZZ5WpZI55IUqDQ3K86l1499rb0Ol5HUrbNKa1rg-aKSYwZwgiokd_0JnrfRu_i1SeASDL00ixFVV6F4K3lV74em78m2agl1r1SquOWvVSq8aYOVw398XcTn8S3x4jwFdAiKv22fpfp_9t_QLzcH9K</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kitayama, Tomoya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>2018</creationdate><title>The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain</title><author>Kitayama, Tomoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Chlorides</topic><topic>GABAergic Neurons - metabolism</topic><topic>Humans</topic><topic>K Cl- Cotransporters</topic><topic>Low level</topic><topic>Neuralgia - metabolism</topic><topic>Neuralgia - physiopathology</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Pain</topic><topic>Peripheral Nerve Injuries - metabolism</topic><topic>Peripheral Nerve Injuries - physiopathology</topic><topic>Peripheral neuropathy</topic><topic>Potassium</topic><topic>Potassium-chloride cotransporter</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal Cord - physiopathology</topic><topic>Symporters - metabolism</topic><topic>Synaptic Transmission - genetics</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitayama, Tomoya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitayama, Tomoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2018</date><risdate>2018</risdate><volume>43</volume><issue>1</issue><spage>110</spage><epage>115</epage><pages>110-115</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K + -Cl − -cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28677029</pmid><doi>10.1007/s11064-017-2344-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-3190
ispartof Neurochemical research, 2018, Vol.43 (1), p.110-115
issn 0364-3190
1573-6903
language eng
recordid cdi_proquest_miscellaneous_1916381306
source Springer Nature
subjects Animals
Biochemistry
Biomedicine
Cell Biology
Chlorides
GABAergic Neurons - metabolism
Humans
K Cl- Cotransporters
Low level
Neuralgia - metabolism
Neuralgia - physiopathology
Neurochemistry
Neurology
Neurosciences
Original Paper
Pain
Peripheral Nerve Injuries - metabolism
Peripheral Nerve Injuries - physiopathology
Peripheral neuropathy
Potassium
Potassium-chloride cotransporter
Spinal cord
Spinal Cord - metabolism
Spinal Cord - physiopathology
Symporters - metabolism
Synaptic Transmission - genetics
γ-Aminobutyric acid
title The Role of K+-Cl−-Cotransporter-2 in Neuropathic Pain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20K+-Cl%E2%88%92-Cotransporter-2%20in%20Neuropathic%20Pain&rft.jtitle=Neurochemical%20research&rft.au=Kitayama,%20Tomoya&rft.date=2018&rft.volume=43&rft.issue=1&rft.spage=110&rft.epage=115&rft.pages=110-115&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-017-2344-3&rft_dat=%3Cproquest_cross%3E1985003184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-f28277bc0c4a46965bbb64303d603927952936bf0e9bfe5300521faf7838b6ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1985003184&rft_id=info:pmid/28677029&rfr_iscdi=true