Loading…

Synthesis of Chlorine‐Substituted Graphdiyne and Applications for Lithium‐Ion Storage

Chlorine‐substituted graphdiyne (Cl‐GDY) is prepared through a Glaser–Hay coupling reaction on the copper foil. Cl‐GDY is endowed with a unique π‐conjugated carbon skeleton with expanded pore size in two dimensions, having graphdiyne‐like sp‐ and sp2‐ hybridized carbon atoms. As a result, the transf...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2017-08, Vol.56 (36), p.10740-10745
Main Authors: Wang, Ning, He, Jianjiang, Tu, Zeyi, Yang, Ze, Zhao, Fuhua, Li, Xiaodong, Huang, Changshui, Wang, Kun, Jiu, Tonggang, Yi, Yuanping, Li, Yuliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chlorine‐substituted graphdiyne (Cl‐GDY) is prepared through a Glaser–Hay coupling reaction on the copper foil. Cl‐GDY is endowed with a unique π‐conjugated carbon skeleton with expanded pore size in two dimensions, having graphdiyne‐like sp‐ and sp2‐ hybridized carbon atoms. As a result, the transfer tunnels for lithium (Li) ions in the perpendicular direction of the molecular plane are enlarged. Moreover, benefiting from the bottom‐to‐up fabrication procedure of graphdiyne and the strong chemical tailorability of the alkinyl‐contained monomer, the amount of substitutional chlorine atoms with appropriate electronegativity and atom size is high and evenly distributed on the as‐prepared carbon framework, which will synergistically stabilize the Li intercalated in the Cl‐GDY framework, and thus generate more Li storage sites. Profiting from the above unique structure, Cl‐GDY shows remarkable electrochemical properties in lithium ion half‐cells. Lithium fishing net: Chlorine‐substituted graphdiyne (Cl‐GDY) is prepared through a bottom‐up chemical strategy. Cl‐GDY has a unique structure with expanded pore size and even distribution of chlorine in the π‐conjugated carbon skeleton, which will synergistically stabilize the lithium atom intercalated in the Cl‐GDY framework. Cl‐GDY shows remarkable electrochemical performance in lithium ion half‐cells.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201704779