Loading…

Design and analysis of aerodynamic force platforms for free flight studies

We describe and explain new advancements in the design of the aerodynamic force platform, a novel instrument that can directly measure the aerodynamic forces generated by freely flying animals and robots. Such in vivo recordings are essential to better understand the precise aerodynamic function of...

Full description

Saved in:
Bibliographic Details
Published in:Bioinspiration & biomimetics 2017-10, Vol.12 (6), p.064001-064001
Main Authors: Hightower, Ben J, Ingersoll, Rivers, Chin, Diana D, Lawhon, Carl, Haselsteiner, Andreas F, Lentink, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe and explain new advancements in the design of the aerodynamic force platform, a novel instrument that can directly measure the aerodynamic forces generated by freely flying animals and robots. Such in vivo recordings are essential to better understand the precise aerodynamic function of flapping wings in nature, which can critically inform the design of new bioinspired robots. By designing the aerodynamic force platform to be stiff yet lightweight, the natural frequencies of all structural components can be made over five times greater than the frequencies of interest. The associated high-frequency noise can then be filtered out during post-processing to obtain accurate and precise force recordings. We illustrate these abilities by measuring the aerodynamic forces generated by a freely flying bird. The design principles can also be translated to other fluid media. This offers an opportunity to perform high-throughput, real-time, non-intrusive, and in vivo comparative biomechanical measurements of force generation by locomoting animals and robots. These recordings can include complex bimodal terrestrial, aquatic, and aerial behaviors, which will help advance the fields of experimental biology and bioinspired design.
ISSN:1748-3190
1748-3190
DOI:10.1088/1748-3190/aa7eb2