Loading…

Adsorption of finite semiflexible polymers and their loop and tail distributions

We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2017-07, Vol.147 (1), p.014901-014901
Main Authors: Kampmann, Tobias A., Kierfeld, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-57b38841ceed4f282eb6986d567b44c51fbfcef93a35a7420efa52feefbabeab3
cites cdi_FETCH-LOGICAL-c348t-57b38841ceed4f282eb6986d567b44c51fbfcef93a35a7420efa52feefbabeab3
container_end_page 014901
container_issue 1
container_start_page 014901
container_title The Journal of chemical physics
container_volume 147
creator Kampmann, Tobias A.
Kierfeld, Jan
description We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].
doi_str_mv 10.1063/1.4990418
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1917667218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917667218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-57b38841ceed4f282eb6986d567b44c51fbfcef93a35a7420efa52feefbabeab3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOo4ufAEpuFGhmpumabIU8Q8GdKHrkrQ3GGmbmrTgvL0dOrpw4epy4XD4OIScAL0CKrJruOJKUQ5yhyyASpUWQtFdsqCUQaoEFQfkMMYPSikUjO-TAyaFlJwVC_JyU0cf-sH5LvE2sa5zAyYRW2cb_HKmwaT3zbrFEBPd1cnwji4kjff9_GrXJLWLQ3Bm3EjiEdmzuol4vL1L8nZ_93r7mK6eH55ub1ZplXE5pHlhsmkCVIg1t0wyNEJJUeeiMJxXOVhjK7Qq01muC84oWp0zi2iNNqhNtiTns7cP_nPEOJStixU2je7Qj7EEBYUQBQM5oWd_0A8_hm5aVzIAQRWXoCbqYqaq4GMMaMs-uFaHdQm03GQuodxmntjTrXE0Lda_5E_XCbicgVi5QW_C_GP7Bi7MhbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116094819</pqid></control><display><type>article</type><title>Adsorption of finite semiflexible polymers and their loop and tail distributions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Kampmann, Tobias A. ; Kierfeld, Jan</creator><creatorcontrib>Kampmann, Tobias A. ; Kierfeld, Jan</creatorcontrib><description>We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4990418</identifier><identifier>PMID: 28688427</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Adsorption ; Computer simulation ; Contours ; Crossovers ; Filaments ; Free energy ; Polymers ; Shape</subject><ispartof>The Journal of chemical physics, 2017-07, Vol.147 (1), p.014901-014901</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-57b38841ceed4f282eb6986d567b44c51fbfcef93a35a7420efa52feefbabeab3</citedby><cites>FETCH-LOGICAL-c348t-57b38841ceed4f282eb6986d567b44c51fbfcef93a35a7420efa52feefbabeab3</cites><orcidid>0000-0003-4291-0638 ; 0000000342910638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4990418$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28688427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kampmann, Tobias A.</creatorcontrib><creatorcontrib>Kierfeld, Jan</creatorcontrib><title>Adsorption of finite semiflexible polymers and their loop and tail distributions</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].</description><subject>Adsorption</subject><subject>Computer simulation</subject><subject>Contours</subject><subject>Crossovers</subject><subject>Filaments</subject><subject>Free energy</subject><subject>Polymers</subject><subject>Shape</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOo4ufAEpuFGhmpumabIU8Q8GdKHrkrQ3GGmbmrTgvL0dOrpw4epy4XD4OIScAL0CKrJruOJKUQ5yhyyASpUWQtFdsqCUQaoEFQfkMMYPSikUjO-TAyaFlJwVC_JyU0cf-sH5LvE2sa5zAyYRW2cb_HKmwaT3zbrFEBPd1cnwji4kjff9_GrXJLWLQ3Bm3EjiEdmzuol4vL1L8nZ_93r7mK6eH55ub1ZplXE5pHlhsmkCVIg1t0wyNEJJUeeiMJxXOVhjK7Qq01muC84oWp0zi2iNNqhNtiTns7cP_nPEOJStixU2je7Qj7EEBYUQBQM5oWd_0A8_hm5aVzIAQRWXoCbqYqaq4GMMaMs-uFaHdQm03GQuodxmntjTrXE0Lda_5E_XCbicgVi5QW_C_GP7Bi7MhbM</recordid><startdate>20170707</startdate><enddate>20170707</enddate><creator>Kampmann, Tobias A.</creator><creator>Kierfeld, Jan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4291-0638</orcidid><orcidid>https://orcid.org/0000000342910638</orcidid></search><sort><creationdate>20170707</creationdate><title>Adsorption of finite semiflexible polymers and their loop and tail distributions</title><author>Kampmann, Tobias A. ; Kierfeld, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-57b38841ceed4f282eb6986d567b44c51fbfcef93a35a7420efa52feefbabeab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Computer simulation</topic><topic>Contours</topic><topic>Crossovers</topic><topic>Filaments</topic><topic>Free energy</topic><topic>Polymers</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kampmann, Tobias A.</creatorcontrib><creatorcontrib>Kierfeld, Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampmann, Tobias A.</au><au>Kierfeld, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of finite semiflexible polymers and their loop and tail distributions</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2017-07-07</date><risdate>2017</risdate><volume>147</volume><issue>1</issue><spage>014901</spage><epage>014901</epage><pages>014901-014901</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28688427</pmid><doi>10.1063/1.4990418</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4291-0638</orcidid><orcidid>https://orcid.org/0000000342910638</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2017-07, Vol.147 (1), p.014901-014901
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1917667218
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Adsorption
Computer simulation
Contours
Crossovers
Filaments
Free energy
Polymers
Shape
title Adsorption of finite semiflexible polymers and their loop and tail distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20finite%20semiflexible%20polymers%20and%20their%20loop%20and%20tail%20distributions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kampmann,%20Tobias%20A.&rft.date=2017-07-07&rft.volume=147&rft.issue=1&rft.spage=014901&rft.epage=014901&rft.pages=014901-014901&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4990418&rft_dat=%3Cproquest_cross%3E1917667218%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-57b38841ceed4f282eb6986d567b44c51fbfcef93a35a7420efa52feefbabeab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116094819&rft_id=info:pmid/28688427&rfr_iscdi=true