Loading…
Constraints in the application of the Branched and Isoprenoid Tetraether index as a terrestrial input proxy
Determination of the relative inputs of aquatic autochthonous and terrestrial allochthonous organic matter into marine and lacustrine environments is essential to understanding the global carbon budget. A variety of proxies are used for this purpose, including the Branched and Isoprenoid Tetraether...
Saved in:
Published in: | Journal of Geophysical Research 2011-10, Vol.116 (C10), p.n/a, Article C10032 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Determination of the relative inputs of aquatic autochthonous and terrestrial allochthonous organic matter into marine and lacustrine environments is essential to understanding the global carbon budget. A variety of proxies are used for this purpose, including the Branched and Isoprenoid Tetraether (BIT) index. This is calculated from the concentrations of branched glycerol dialkyl glycerol tetraethers (GDGTs), derived from unidentified terrestrial bacteria, and crenarchaeol, a marker for aquatic mesophile Thaumarchaeota (Crenarchaeota group I). As the index is a ratio, its value depends on both the crenarchaeol aquatic in situ production and the soil‐derived branched GDGT input. Therefore, the BIT index reflects not only changes in the input of terrestrial or soil organic matter but also relative variations in aquatic Thaumarchaeota abundance in the water column. In fact, we show that in oceanic and lacustrine settings, the BIT index can be dominated by the aquatic end‐member of the ratio. Consequently, the BIT index by itself can be an unreliable proxy to compare the input of terrestrial matter between sites and over time, and we propose that the quantification of branched GDGT fluxes or concentrations may instead be a better indicator of soil terrestrial inputs.
Key Points
The BIT is often uncorrelated to other terrestrial organic matter input proxies
Paleorecords reveal that the aquatic end‐member dominates the BIT
Branched GDGTs give a better estimate of the terrestrial organic matter input |
---|---|
ISSN: | 0148-0227 2169-9275 2156-2202 2169-9291 |
DOI: | 10.1029/2011JC007062 |