Loading…
Modeling groundwater vulnerability to pollution using Optimized DRASTIC model
The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring th...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2014-01, Vol.20 (1), p.12002-29 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83 |
---|---|
cites | cdi_FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83 |
container_end_page | 29 |
container_issue | 1 |
container_start_page | 12002 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 20 |
creator | Mogaji, Kehinde Anthony Lim, Hwee San Abdullar, Khiruddin |
description | The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. Results show that more than 50 % of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM). The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM - based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment. |
doi_str_mv | 10.1088/1755-1315/20/1/012002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919958224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753507599</sourcerecordid><originalsourceid>FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83</originalsourceid><addsrcrecordid>eNqNkd1LwzAUxYsoOKd_glDwxZfZ3Hw0zeOYX4ONgc7nkKXp6EibmrTK_OttmYj4og-Xezj8OJfLiaJLQDeAsiwBztgECLAEowQSBBghfBSNvv3jH_o0Ogthh1DKKRGjaLl0ubFlvY233nV1_q5a4-O3ztbGq01py3Yfty5unLVdW7o67sIAr5q2rMoPk8e3T9Pn9XwWV0POeXRSKBvMxdceRy_3d-vZ42SxepjPpouJogLaCQeENWI6Ryn0w3GhNeUFzVWmUioIwngjhCa9xljjjUo1zRkGA1yIQmVkHF0fchvvXjsTWlmVQRtrVW1cFyQIEIJlGNO_Uc4IQ5wJ8Q8UOBWMZrxHr36hO9f5uv9ZYkYoRUgA6yl2oLR3IXhTyMaXlfJ7CUgO1Q3XmRxqkbh35KE68gl6hYm2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534400915</pqid></control><display><type>article</type><title>Modeling groundwater vulnerability to pollution using Optimized DRASTIC model</title><source>Publicly Available Content Database</source><creator>Mogaji, Kehinde Anthony ; Lim, Hwee San ; Abdullar, Khiruddin</creator><creatorcontrib>Mogaji, Kehinde Anthony ; Lim, Hwee San ; Abdullar, Khiruddin</creatorcontrib><description>The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. Results show that more than 50 % of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM). The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM - based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment.</description><identifier>ISSN: 1755-1315</identifier><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/20/1/012002</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Algorithms ; Analytic hierarchy process ; Assessments ; Decision analysis ; Decision making ; Decision support systems ; Effectiveness ; Groundwater ; Groundwater pollution ; Manganese ; Mathematical models ; Model accuracy ; Parameters ; Pollution abatement ; Predictions ; Spatial analysis</subject><ispartof>IOP conference series. Earth and environmental science, 2014-01, Vol.20 (1), p.12002-29</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83</citedby><cites>FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2534400915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589</link.rule.ids></links><search><creatorcontrib>Mogaji, Kehinde Anthony</creatorcontrib><creatorcontrib>Lim, Hwee San</creatorcontrib><creatorcontrib>Abdullar, Khiruddin</creatorcontrib><title>Modeling groundwater vulnerability to pollution using Optimized DRASTIC model</title><title>IOP conference series. Earth and environmental science</title><description>The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. Results show that more than 50 % of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM). The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM - based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytic hierarchy process</subject><subject>Assessments</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Effectiveness</subject><subject>Groundwater</subject><subject>Groundwater pollution</subject><subject>Manganese</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Parameters</subject><subject>Pollution abatement</subject><subject>Predictions</subject><subject>Spatial analysis</subject><issn>1755-1315</issn><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkd1LwzAUxYsoOKd_glDwxZfZ3Hw0zeOYX4ONgc7nkKXp6EibmrTK_OttmYj4og-Xezj8OJfLiaJLQDeAsiwBztgECLAEowQSBBghfBSNvv3jH_o0Ogthh1DKKRGjaLl0ubFlvY233nV1_q5a4-O3ztbGq01py3Yfty5unLVdW7o67sIAr5q2rMoPk8e3T9Pn9XwWV0POeXRSKBvMxdceRy_3d-vZ42SxepjPpouJogLaCQeENWI6Ryn0w3GhNeUFzVWmUioIwngjhCa9xljjjUo1zRkGA1yIQmVkHF0fchvvXjsTWlmVQRtrVW1cFyQIEIJlGNO_Uc4IQ5wJ8Q8UOBWMZrxHr36hO9f5uv9ZYkYoRUgA6yl2oLR3IXhTyMaXlfJ7CUgO1Q3XmRxqkbh35KE68gl6hYm2</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Mogaji, Kehinde Anthony</creator><creator>Lim, Hwee San</creator><creator>Abdullar, Khiruddin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TN</scope><scope>H96</scope></search><sort><creationdate>20140101</creationdate><title>Modeling groundwater vulnerability to pollution using Optimized DRASTIC model</title><author>Mogaji, Kehinde Anthony ; Lim, Hwee San ; Abdullar, Khiruddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytic hierarchy process</topic><topic>Assessments</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Effectiveness</topic><topic>Groundwater</topic><topic>Groundwater pollution</topic><topic>Manganese</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Parameters</topic><topic>Pollution abatement</topic><topic>Predictions</topic><topic>Spatial analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogaji, Kehinde Anthony</creatorcontrib><creatorcontrib>Lim, Hwee San</creatorcontrib><creatorcontrib>Abdullar, Khiruddin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogaji, Kehinde Anthony</au><au>Lim, Hwee San</au><au>Abdullar, Khiruddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling groundwater vulnerability to pollution using Optimized DRASTIC model</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>20</volume><issue>1</issue><spage>12002</spage><epage>29</epage><pages>12002-29</pages><issn>1755-1315</issn><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. Results show that more than 50 % of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM). The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM - based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/20/1/012002</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1315 |
ispartof | IOP conference series. Earth and environmental science, 2014-01, Vol.20 (1), p.12002-29 |
issn | 1755-1315 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919958224 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Analytic hierarchy process Assessments Decision analysis Decision making Decision support systems Effectiveness Groundwater Groundwater pollution Manganese Mathematical models Model accuracy Parameters Pollution abatement Predictions Spatial analysis |
title | Modeling groundwater vulnerability to pollution using Optimized DRASTIC model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20groundwater%20vulnerability%20to%20pollution%20using%20Optimized%20DRASTIC%20model&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Mogaji,%20Kehinde%20Anthony&rft.date=2014-01-01&rft.volume=20&rft.issue=1&rft.spage=12002&rft.epage=29&rft.pages=12002-29&rft.issn=1755-1315&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/20/1/012002&rft_dat=%3Cproquest_cross%3E1753507599%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534400915&rft_id=info:pmid/&rfr_iscdi=true |