Loading…

Modeling groundwater vulnerability to pollution using Optimized DRASTIC model

The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring th...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2014-01, Vol.20 (1), p.12002-29
Main Authors: Mogaji, Kehinde Anthony, Lim, Hwee San, Abdullar, Khiruddin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83
cites cdi_FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83
container_end_page 29
container_issue 1
container_start_page 12002
container_title IOP conference series. Earth and environmental science
container_volume 20
creator Mogaji, Kehinde Anthony
Lim, Hwee San
Abdullar, Khiruddin
description The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. Results show that more than 50 % of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM). The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM - based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment.
doi_str_mv 10.1088/1755-1315/20/1/012002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919958224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753507599</sourcerecordid><originalsourceid>FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83</originalsourceid><addsrcrecordid>eNqNkd1LwzAUxYsoOKd_glDwxZfZ3Hw0zeOYX4ONgc7nkKXp6EibmrTK_OttmYj4og-Xezj8OJfLiaJLQDeAsiwBztgECLAEowQSBBghfBSNvv3jH_o0Ogthh1DKKRGjaLl0ubFlvY233nV1_q5a4-O3ztbGq01py3Yfty5unLVdW7o67sIAr5q2rMoPk8e3T9Pn9XwWV0POeXRSKBvMxdceRy_3d-vZ42SxepjPpouJogLaCQeENWI6Ryn0w3GhNeUFzVWmUioIwngjhCa9xljjjUo1zRkGA1yIQmVkHF0fchvvXjsTWlmVQRtrVW1cFyQIEIJlGNO_Uc4IQ5wJ8Q8UOBWMZrxHr36hO9f5uv9ZYkYoRUgA6yl2oLR3IXhTyMaXlfJ7CUgO1Q3XmRxqkbh35KE68gl6hYm2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534400915</pqid></control><display><type>article</type><title>Modeling groundwater vulnerability to pollution using Optimized DRASTIC model</title><source>Publicly Available Content Database</source><creator>Mogaji, Kehinde Anthony ; Lim, Hwee San ; Abdullar, Khiruddin</creator><creatorcontrib>Mogaji, Kehinde Anthony ; Lim, Hwee San ; Abdullar, Khiruddin</creatorcontrib><description>The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. Results show that more than 50 % of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM). The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM - based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment.</description><identifier>ISSN: 1755-1315</identifier><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/20/1/012002</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Algorithms ; Analytic hierarchy process ; Assessments ; Decision analysis ; Decision making ; Decision support systems ; Effectiveness ; Groundwater ; Groundwater pollution ; Manganese ; Mathematical models ; Model accuracy ; Parameters ; Pollution abatement ; Predictions ; Spatial analysis</subject><ispartof>IOP conference series. Earth and environmental science, 2014-01, Vol.20 (1), p.12002-29</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83</citedby><cites>FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2534400915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589</link.rule.ids></links><search><creatorcontrib>Mogaji, Kehinde Anthony</creatorcontrib><creatorcontrib>Lim, Hwee San</creatorcontrib><creatorcontrib>Abdullar, Khiruddin</creatorcontrib><title>Modeling groundwater vulnerability to pollution using Optimized DRASTIC model</title><title>IOP conference series. Earth and environmental science</title><description>The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. Results show that more than 50 % of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM). The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM - based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytic hierarchy process</subject><subject>Assessments</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Effectiveness</subject><subject>Groundwater</subject><subject>Groundwater pollution</subject><subject>Manganese</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Parameters</subject><subject>Pollution abatement</subject><subject>Predictions</subject><subject>Spatial analysis</subject><issn>1755-1315</issn><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkd1LwzAUxYsoOKd_glDwxZfZ3Hw0zeOYX4ONgc7nkKXp6EibmrTK_OttmYj4og-Xezj8OJfLiaJLQDeAsiwBztgECLAEowQSBBghfBSNvv3jH_o0Ogthh1DKKRGjaLl0ubFlvY233nV1_q5a4-O3ztbGq01py3Yfty5unLVdW7o67sIAr5q2rMoPk8e3T9Pn9XwWV0POeXRSKBvMxdceRy_3d-vZ42SxepjPpouJogLaCQeENWI6Ryn0w3GhNeUFzVWmUioIwngjhCa9xljjjUo1zRkGA1yIQmVkHF0fchvvXjsTWlmVQRtrVW1cFyQIEIJlGNO_Uc4IQ5wJ8Q8UOBWMZrxHr36hO9f5uv9ZYkYoRUgA6yl2oLR3IXhTyMaXlfJ7CUgO1Q3XmRxqkbh35KE68gl6hYm2</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Mogaji, Kehinde Anthony</creator><creator>Lim, Hwee San</creator><creator>Abdullar, Khiruddin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TN</scope><scope>H96</scope></search><sort><creationdate>20140101</creationdate><title>Modeling groundwater vulnerability to pollution using Optimized DRASTIC model</title><author>Mogaji, Kehinde Anthony ; Lim, Hwee San ; Abdullar, Khiruddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytic hierarchy process</topic><topic>Assessments</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Effectiveness</topic><topic>Groundwater</topic><topic>Groundwater pollution</topic><topic>Manganese</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Parameters</topic><topic>Pollution abatement</topic><topic>Predictions</topic><topic>Spatial analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogaji, Kehinde Anthony</creatorcontrib><creatorcontrib>Lim, Hwee San</creatorcontrib><creatorcontrib>Abdullar, Khiruddin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogaji, Kehinde Anthony</au><au>Lim, Hwee San</au><au>Abdullar, Khiruddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling groundwater vulnerability to pollution using Optimized DRASTIC model</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>20</volume><issue>1</issue><spage>12002</spage><epage>29</epage><pages>12002-29</pages><issn>1755-1315</issn><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. Results show that more than 50 % of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM). The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM - based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/20/1/012002</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1315
ispartof IOP conference series. Earth and environmental science, 2014-01, Vol.20 (1), p.12002-29
issn 1755-1315
1755-1307
1755-1315
language eng
recordid cdi_proquest_miscellaneous_1919958224
source Publicly Available Content Database
subjects Accuracy
Algorithms
Analytic hierarchy process
Assessments
Decision analysis
Decision making
Decision support systems
Effectiveness
Groundwater
Groundwater pollution
Manganese
Mathematical models
Model accuracy
Parameters
Pollution abatement
Predictions
Spatial analysis
title Modeling groundwater vulnerability to pollution using Optimized DRASTIC model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20groundwater%20vulnerability%20to%20pollution%20using%20Optimized%20DRASTIC%20model&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Mogaji,%20Kehinde%20Anthony&rft.date=2014-01-01&rft.volume=20&rft.issue=1&rft.spage=12002&rft.epage=29&rft.pages=12002-29&rft.issn=1755-1315&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/20/1/012002&rft_dat=%3Cproquest_cross%3E1753507599%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a491t-7102c05cd061d0672fcc47f4da8a6493022b99c364922c2ba6c4d521e1799fa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534400915&rft_id=info:pmid/&rfr_iscdi=true