Loading…

The incorporation of water into lower-mantle perovskites: A first-principles study

We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol....

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2013-02, Vol.364, p.37-43
Main Authors: Hernández, E.R., Alfè, D., Brodholt, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3
cites cdi_FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3
container_end_page 43
container_issue
container_start_page 37
container_title Earth and planetary science letters
container_volume 364
creator Hernández, E.R.
Alfè, D.
Brodholt, J.
description We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol. This translates to a ringwoodite to perovskite partition coefficient of between 10 and 13, depending on temperature. These values are in good agreement with the partitioning experiments of Inoue et al. (2010) on Fe-bearing samples, where they find a partition coefficient of about 15. We also find that water incorporates into perovskite more readily than into periclase (also under Fe-free conditions), and we predict a perovskite to periclase partition coefficient of 90 at 24GPa and 1500K. We conclude, therefore, that the lower-mantle is able to contain substantial amounts of water, perhaps as much as 1000ppm. [Display omitted] ► We model the ringwoodite-to-perovskite plus periclase phase boundary from first principles. ► We determine low-energy configurations of proton–vacancy complex structures in mantle minerals. ► We model the adsorption of water in lower mantle minerals from first principles calculations.
doi_str_mv 10.1016/j.epsl.2013.01.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919960354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X13000137</els_id><sourcerecordid>1323261015</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_wFOOXnadbJL9EC-l-AUFQSr0FtLsFFO3mzVJLf33ptSzngbeeZ-BeQi5ZpAzYOXtOschdHkBjOfAcgB5QkaM1zJLyeKUjABYkdUFW5yTixDWAFDKshmRt_kHUtsb5wfndbSup25FdzqiT3F0tHM79NlG97FDOqB33-HTRgx3dEJX1oeYDT7xdugw0BC37f6SnK10F_Dqd47J--PDfPqczV6fXqaTWaYF5zFjCMgFNrWAEkqudb1cCl6JGhGEZoJr1KY1FZMSpTTQMFjKmsu0qriuNB-Tm-PdwbuvLYaoNjYY7Drdo9sGxRrWNCVwKf6v8oIXZTIpU7U4Vo13IXhcqfTfRvu9YqAOrtVaHVyrg2sFTCXXCbo_Qpj-_bboVTAWe4Ot9Wiiap39C_8B7VeH9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323261015</pqid></control><display><type>article</type><title>The incorporation of water into lower-mantle perovskites: A first-principles study</title><source>ScienceDirect Journals</source><creator>Hernández, E.R. ; Alfè, D. ; Brodholt, J.</creator><creatorcontrib>Hernández, E.R. ; Alfè, D. ; Brodholt, J.</creatorcontrib><description>We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol. This translates to a ringwoodite to perovskite partition coefficient of between 10 and 13, depending on temperature. These values are in good agreement with the partitioning experiments of Inoue et al. (2010) on Fe-bearing samples, where they find a partition coefficient of about 15. We also find that water incorporates into perovskite more readily than into periclase (also under Fe-free conditions), and we predict a perovskite to periclase partition coefficient of 90 at 24GPa and 1500K. We conclude, therefore, that the lower-mantle is able to contain substantial amounts of water, perhaps as much as 1000ppm. [Display omitted] ► We model the ringwoodite-to-perovskite plus periclase phase boundary from first principles. ► We determine low-energy configurations of proton–vacancy complex structures in mantle minerals. ► We model the adsorption of water in lower mantle minerals from first principles calculations.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2013.01.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coefficients ; Earth ; first principles simulation ; Iron ; Mathematical analysis ; partition coefficient ; Partitioning ; Partitions ; Periclase ; Perovskites ; water in mantle minerals</subject><ispartof>Earth and planetary science letters, 2013-02, Vol.364, p.37-43</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3</citedby><cites>FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hernández, E.R.</creatorcontrib><creatorcontrib>Alfè, D.</creatorcontrib><creatorcontrib>Brodholt, J.</creatorcontrib><title>The incorporation of water into lower-mantle perovskites: A first-principles study</title><title>Earth and planetary science letters</title><description>We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol. This translates to a ringwoodite to perovskite partition coefficient of between 10 and 13, depending on temperature. These values are in good agreement with the partitioning experiments of Inoue et al. (2010) on Fe-bearing samples, where they find a partition coefficient of about 15. We also find that water incorporates into perovskite more readily than into periclase (also under Fe-free conditions), and we predict a perovskite to periclase partition coefficient of 90 at 24GPa and 1500K. We conclude, therefore, that the lower-mantle is able to contain substantial amounts of water, perhaps as much as 1000ppm. [Display omitted] ► We model the ringwoodite-to-perovskite plus periclase phase boundary from first principles. ► We determine low-energy configurations of proton–vacancy complex structures in mantle minerals. ► We model the adsorption of water in lower mantle minerals from first principles calculations.</description><subject>Coefficients</subject><subject>Earth</subject><subject>first principles simulation</subject><subject>Iron</subject><subject>Mathematical analysis</subject><subject>partition coefficient</subject><subject>Partitioning</subject><subject>Partitions</subject><subject>Periclase</subject><subject>Perovskites</subject><subject>water in mantle minerals</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_wFOOXnadbJL9EC-l-AUFQSr0FtLsFFO3mzVJLf33ptSzngbeeZ-BeQi5ZpAzYOXtOschdHkBjOfAcgB5QkaM1zJLyeKUjABYkdUFW5yTixDWAFDKshmRt_kHUtsb5wfndbSup25FdzqiT3F0tHM79NlG97FDOqB33-HTRgx3dEJX1oeYDT7xdugw0BC37f6SnK10F_Dqd47J--PDfPqczV6fXqaTWaYF5zFjCMgFNrWAEkqudb1cCl6JGhGEZoJr1KY1FZMSpTTQMFjKmsu0qriuNB-Tm-PdwbuvLYaoNjYY7Drdo9sGxRrWNCVwKf6v8oIXZTIpU7U4Vo13IXhcqfTfRvu9YqAOrtVaHVyrg2sFTCXXCbo_Qpj-_bboVTAWe4Ot9Wiiap39C_8B7VeH9A</recordid><startdate>20130215</startdate><enddate>20130215</enddate><creator>Hernández, E.R.</creator><creator>Alfè, D.</creator><creator>Brodholt, J.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20130215</creationdate><title>The incorporation of water into lower-mantle perovskites: A first-principles study</title><author>Hernández, E.R. ; Alfè, D. ; Brodholt, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Coefficients</topic><topic>Earth</topic><topic>first principles simulation</topic><topic>Iron</topic><topic>Mathematical analysis</topic><topic>partition coefficient</topic><topic>Partitioning</topic><topic>Partitions</topic><topic>Periclase</topic><topic>Perovskites</topic><topic>water in mantle minerals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández, E.R.</creatorcontrib><creatorcontrib>Alfè, D.</creatorcontrib><creatorcontrib>Brodholt, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández, E.R.</au><au>Alfè, D.</au><au>Brodholt, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The incorporation of water into lower-mantle perovskites: A first-principles study</atitle><jtitle>Earth and planetary science letters</jtitle><date>2013-02-15</date><risdate>2013</risdate><volume>364</volume><spage>37</spage><epage>43</epage><pages>37-43</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol. This translates to a ringwoodite to perovskite partition coefficient of between 10 and 13, depending on temperature. These values are in good agreement with the partitioning experiments of Inoue et al. (2010) on Fe-bearing samples, where they find a partition coefficient of about 15. We also find that water incorporates into perovskite more readily than into periclase (also under Fe-free conditions), and we predict a perovskite to periclase partition coefficient of 90 at 24GPa and 1500K. We conclude, therefore, that the lower-mantle is able to contain substantial amounts of water, perhaps as much as 1000ppm. [Display omitted] ► We model the ringwoodite-to-perovskite plus periclase phase boundary from first principles. ► We determine low-energy configurations of proton–vacancy complex structures in mantle minerals. ► We model the adsorption of water in lower mantle minerals from first principles calculations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2013.01.005</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2013-02, Vol.364, p.37-43
issn 0012-821X
1385-013X
language eng
recordid cdi_proquest_miscellaneous_1919960354
source ScienceDirect Journals
subjects Coefficients
Earth
first principles simulation
Iron
Mathematical analysis
partition coefficient
Partitioning
Partitions
Periclase
Perovskites
water in mantle minerals
title The incorporation of water into lower-mantle perovskites: A first-principles study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20incorporation%20of%20water%20into%20lower-mantle%20perovskites:%20A%20first-principles%20study&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Hern%C3%A1ndez,%20E.R.&rft.date=2013-02-15&rft.volume=364&rft.spage=37&rft.epage=43&rft.pages=37-43&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2013.01.005&rft_dat=%3Cproquest_cross%3E1323261015%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323261015&rft_id=info:pmid/&rfr_iscdi=true