Loading…
The incorporation of water into lower-mantle perovskites: A first-principles study
We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol....
Saved in:
Published in: | Earth and planetary science letters 2013-02, Vol.364, p.37-43 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3 |
container_end_page | 43 |
container_issue | |
container_start_page | 37 |
container_title | Earth and planetary science letters |
container_volume | 364 |
creator | Hernández, E.R. Alfè, D. Brodholt, J. |
description | We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol. This translates to a ringwoodite to perovskite partition coefficient of between 10 and 13, depending on temperature. These values are in good agreement with the partitioning experiments of Inoue et al. (2010) on Fe-bearing samples, where they find a partition coefficient of about 15. We also find that water incorporates into perovskite more readily than into periclase (also under Fe-free conditions), and we predict a perovskite to periclase partition coefficient of 90 at 24GPa and 1500K. We conclude, therefore, that the lower-mantle is able to contain substantial amounts of water, perhaps as much as 1000ppm.
[Display omitted]
► We model the ringwoodite-to-perovskite plus periclase phase boundary from first principles. ► We determine low-energy configurations of proton–vacancy complex structures in mantle minerals. ► We model the adsorption of water in lower mantle minerals from first principles calculations. |
doi_str_mv | 10.1016/j.epsl.2013.01.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919960354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X13000137</els_id><sourcerecordid>1323261015</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_wFOOXnadbJL9EC-l-AUFQSr0FtLsFFO3mzVJLf33ptSzngbeeZ-BeQi5ZpAzYOXtOschdHkBjOfAcgB5QkaM1zJLyeKUjABYkdUFW5yTixDWAFDKshmRt_kHUtsb5wfndbSup25FdzqiT3F0tHM79NlG97FDOqB33-HTRgx3dEJX1oeYDT7xdugw0BC37f6SnK10F_Dqd47J--PDfPqczV6fXqaTWaYF5zFjCMgFNrWAEkqudb1cCl6JGhGEZoJr1KY1FZMSpTTQMFjKmsu0qriuNB-Tm-PdwbuvLYaoNjYY7Drdo9sGxRrWNCVwKf6v8oIXZTIpU7U4Vo13IXhcqfTfRvu9YqAOrtVaHVyrg2sFTCXXCbo_Qpj-_bboVTAWe4Ot9Wiiap39C_8B7VeH9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323261015</pqid></control><display><type>article</type><title>The incorporation of water into lower-mantle perovskites: A first-principles study</title><source>ScienceDirect Journals</source><creator>Hernández, E.R. ; Alfè, D. ; Brodholt, J.</creator><creatorcontrib>Hernández, E.R. ; Alfè, D. ; Brodholt, J.</creatorcontrib><description>We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol. This translates to a ringwoodite to perovskite partition coefficient of between 10 and 13, depending on temperature. These values are in good agreement with the partitioning experiments of Inoue et al. (2010) on Fe-bearing samples, where they find a partition coefficient of about 15. We also find that water incorporates into perovskite more readily than into periclase (also under Fe-free conditions), and we predict a perovskite to periclase partition coefficient of 90 at 24GPa and 1500K. We conclude, therefore, that the lower-mantle is able to contain substantial amounts of water, perhaps as much as 1000ppm.
[Display omitted]
► We model the ringwoodite-to-perovskite plus periclase phase boundary from first principles. ► We determine low-energy configurations of proton–vacancy complex structures in mantle minerals. ► We model the adsorption of water in lower mantle minerals from first principles calculations.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2013.01.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coefficients ; Earth ; first principles simulation ; Iron ; Mathematical analysis ; partition coefficient ; Partitioning ; Partitions ; Periclase ; Perovskites ; water in mantle minerals</subject><ispartof>Earth and planetary science letters, 2013-02, Vol.364, p.37-43</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3</citedby><cites>FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hernández, E.R.</creatorcontrib><creatorcontrib>Alfè, D.</creatorcontrib><creatorcontrib>Brodholt, J.</creatorcontrib><title>The incorporation of water into lower-mantle perovskites: A first-principles study</title><title>Earth and planetary science letters</title><description>We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol. This translates to a ringwoodite to perovskite partition coefficient of between 10 and 13, depending on temperature. These values are in good agreement with the partitioning experiments of Inoue et al. (2010) on Fe-bearing samples, where they find a partition coefficient of about 15. We also find that water incorporates into perovskite more readily than into periclase (also under Fe-free conditions), and we predict a perovskite to periclase partition coefficient of 90 at 24GPa and 1500K. We conclude, therefore, that the lower-mantle is able to contain substantial amounts of water, perhaps as much as 1000ppm.
[Display omitted]
► We model the ringwoodite-to-perovskite plus periclase phase boundary from first principles. ► We determine low-energy configurations of proton–vacancy complex structures in mantle minerals. ► We model the adsorption of water in lower mantle minerals from first principles calculations.</description><subject>Coefficients</subject><subject>Earth</subject><subject>first principles simulation</subject><subject>Iron</subject><subject>Mathematical analysis</subject><subject>partition coefficient</subject><subject>Partitioning</subject><subject>Partitions</subject><subject>Periclase</subject><subject>Perovskites</subject><subject>water in mantle minerals</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_wFOOXnadbJL9EC-l-AUFQSr0FtLsFFO3mzVJLf33ptSzngbeeZ-BeQi5ZpAzYOXtOschdHkBjOfAcgB5QkaM1zJLyeKUjABYkdUFW5yTixDWAFDKshmRt_kHUtsb5wfndbSup25FdzqiT3F0tHM79NlG97FDOqB33-HTRgx3dEJX1oeYDT7xdugw0BC37f6SnK10F_Dqd47J--PDfPqczV6fXqaTWaYF5zFjCMgFNrWAEkqudb1cCl6JGhGEZoJr1KY1FZMSpTTQMFjKmsu0qriuNB-Tm-PdwbuvLYaoNjYY7Drdo9sGxRrWNCVwKf6v8oIXZTIpU7U4Vo13IXhcqfTfRvu9YqAOrtVaHVyrg2sFTCXXCbo_Qpj-_bboVTAWe4Ot9Wiiap39C_8B7VeH9A</recordid><startdate>20130215</startdate><enddate>20130215</enddate><creator>Hernández, E.R.</creator><creator>Alfè, D.</creator><creator>Brodholt, J.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20130215</creationdate><title>The incorporation of water into lower-mantle perovskites: A first-principles study</title><author>Hernández, E.R. ; Alfè, D. ; Brodholt, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Coefficients</topic><topic>Earth</topic><topic>first principles simulation</topic><topic>Iron</topic><topic>Mathematical analysis</topic><topic>partition coefficient</topic><topic>Partitioning</topic><topic>Partitions</topic><topic>Periclase</topic><topic>Perovskites</topic><topic>water in mantle minerals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández, E.R.</creatorcontrib><creatorcontrib>Alfè, D.</creatorcontrib><creatorcontrib>Brodholt, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández, E.R.</au><au>Alfè, D.</au><au>Brodholt, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The incorporation of water into lower-mantle perovskites: A first-principles study</atitle><jtitle>Earth and planetary science letters</jtitle><date>2013-02-15</date><risdate>2013</risdate><volume>364</volume><spage>37</spage><epage>43</epage><pages>37-43</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>We have used first principles methods to calculate the partitioning of water between perovskite and ringwoodite under lower mantle and Fe-free conditions. We find that incorporation of water into ringwoodite is more favourable than into perovskite by about 0.25eV per formula unit, or about 24kJ/mol. This translates to a ringwoodite to perovskite partition coefficient of between 10 and 13, depending on temperature. These values are in good agreement with the partitioning experiments of Inoue et al. (2010) on Fe-bearing samples, where they find a partition coefficient of about 15. We also find that water incorporates into perovskite more readily than into periclase (also under Fe-free conditions), and we predict a perovskite to periclase partition coefficient of 90 at 24GPa and 1500K. We conclude, therefore, that the lower-mantle is able to contain substantial amounts of water, perhaps as much as 1000ppm.
[Display omitted]
► We model the ringwoodite-to-perovskite plus periclase phase boundary from first principles. ► We determine low-energy configurations of proton–vacancy complex structures in mantle minerals. ► We model the adsorption of water in lower mantle minerals from first principles calculations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2013.01.005</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-821X |
ispartof | Earth and planetary science letters, 2013-02, Vol.364, p.37-43 |
issn | 0012-821X 1385-013X |
language | eng |
recordid | cdi_proquest_miscellaneous_1919960354 |
source | ScienceDirect Journals |
subjects | Coefficients Earth first principles simulation Iron Mathematical analysis partition coefficient Partitioning Partitions Periclase Perovskites water in mantle minerals |
title | The incorporation of water into lower-mantle perovskites: A first-principles study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20incorporation%20of%20water%20into%20lower-mantle%20perovskites:%20A%20first-principles%20study&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Hern%C3%A1ndez,%20E.R.&rft.date=2013-02-15&rft.volume=364&rft.spage=37&rft.epage=43&rft.pages=37-43&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2013.01.005&rft_dat=%3Cproquest_cross%3E1323261015%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a433t-1e0e34e98406063aa8bb43748ee04a143aeacdc7155e55c0910b5835a1473a7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323261015&rft_id=info:pmid/&rfr_iscdi=true |