Loading…

Methodology for profiling anti-androgen mixtures in river water using multiple passive samplers and bioassay-directed analyses

The identification of endocrine disrupting chemicals in surface waters is challenging as they comprise a variety of structures which are often present at nanomolar concentrations and are temporally highly variable. Hence, a holistic passive sampling approach can be an efficient technique to overcome...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) 2014-06, Vol.57, p.258-269
Main Authors: LISCIO, Camilla, ABDUL-SADA, Alaa, AL-SALHI, Raghad, RAMSEY, Michael H, HILL, Elizabeth M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The identification of endocrine disrupting chemicals in surface waters is challenging as they comprise a variety of structures which are often present at nanomolar concentrations and are temporally highly variable. Hence, a holistic passive sampling approach can be an efficient technique to overcome these limitations. In this study, a combination of 4 different passive samplers used for sampling polar (POCIS Apharm and POCIS Bpesticide) and apolar compounds (LDPE low density polyethylene membranes, and silicone strips) were used to profile anti-androgenic activity present in river water contaminated by a wastewater effluent. Extracts of passive samplers were analysed using HPLC fractionation in combination with an in vitro androgen receptor antagonist screen (YAS). Anti-androgenic activity was detected in extracts from silicone strips and POCIS A/B at (mean ± SD) 1.1 ± 0.1 and 0.55 ± 0.06 mg flutamide standard equivalents/sampler respectively, but was not detected in LDPE sampler extracts. POCIS samplers revealed higher selectivity for more polar anti-androgenic HPLC fractions compared with silicone strips. Over 31 contaminants were identified which showed inhibition of YAS activity and were potential anti-androgens, and these included fungicides, germicides, flame retardants and pharmaceuticals. This study reveals that passive sampling, using a combination of POCIS A and silicone samplers, is a promising tool for screening complex mixture of anti-androgenic contaminants present in surface waters, with the potential to identify new and emerging structures with endocrine disrupting activity.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2014.03.039