Loading…
Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems
•A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Di...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 2014-11, Vol.519, p.3275-3289 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3 |
---|---|
cites | cdi_FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3 |
container_end_page | 3289 |
container_issue | |
container_start_page | 3275 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 519 |
creator | Jódar, Jorge Lambán, Luis Javier Medina, Agustín Custodio, Emilio |
description | •A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Dispersion lumped models are used.•The solution only depend on the transit time and the assumed lumped model parameters.
This work presents the analytical solution to the convolution integral by taking into account the most widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary functions that only depend on the aquifer mean transit time and the parameters belonging to the assumed lumped model. |
doi_str_mv | 10.1016/j.jhydrol.2014.10.027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919968174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002216941400821X</els_id><sourcerecordid>1647014844</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3</originalsourceid><addsrcrecordid>eNqNkc9q3DAQxk1poNukj1DQpdCLN5It_9GplJC0gUAv7Vlo5dFGiyy5GjnUr5SnrLy76TXVRejTb-Zj5iuKj4xuGWXt9WF7eFyGGNy2ooxnbUur7k2xYX0nyqqj3dtiQ2lVlawV_F3xHvFA86lrvimeb_8onYjyyi3JauUIBjcnGzwJhqRHIDr4pxfJ-gT7mCETItFOIR5Lju57CC7sj283jxMM5aSiGiFBJGMYwGF2GUhapiNj_TQnkqLS-d_MXq8GmGXiVZpXj2w0WPCJ4IIJRrwqLoxyCB_O92Xx6-7258338uHHt_ubrw-l4i1LZdMNVDdVb-qBsqY2wnTUGKpZ1Tasp7BjDaisAxN8Z1rd8541fc1ZCzutjKovi8-nvlMMv2fAJEeLGpxTHsKMkgkmRNuzjr-Oti2lgndC_AfKu5xez9euzQnVMSBGMHKKdlRxkYzKNXF5kOfE5Zr4KufEc92ns4XCvGITldcW_xVXgvY0T5u5LycuZwJPFqJEnRetYbARdJJDsK84_QUzgskM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647014844</pqid></control><display><type>article</type><title>Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems</title><source>Elsevier</source><creator>Jódar, Jorge ; Lambán, Luis Javier ; Medina, Agustín ; Custodio, Emilio</creator><creatorcontrib>Jódar, Jorge ; Lambán, Luis Javier ; Medina, Agustín ; Custodio, Emilio</creatorcontrib><description>•A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Dispersion lumped models are used.•The solution only depend on the transit time and the assumed lumped model parameters.
This work presents the analytical solution to the convolution integral by taking into account the most widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary functions that only depend on the aquifer mean transit time and the parameters belonging to the assumed lumped model.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2014.10.027</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aquifers ; Constants ; Convolution integral ; Convolution integrals ; Dispersions ; Earth sciences ; Earth, ocean, space ; Environmental tracers ; Exact sciences and technology ; Hydrogeology ; Hydrology. Hydrogeology ; Karst hydrogeology ; Lumped parameter models ; Mathematical analysis ; Mathematical models ; Mean transit time ; Tracers ; Trends</subject><ispartof>Journal of hydrology (Amsterdam), 2014-11, Vol.519, p.3275-3289</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3</citedby><cites>FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29080848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jódar, Jorge</creatorcontrib><creatorcontrib>Lambán, Luis Javier</creatorcontrib><creatorcontrib>Medina, Agustín</creatorcontrib><creatorcontrib>Custodio, Emilio</creatorcontrib><title>Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems</title><title>Journal of hydrology (Amsterdam)</title><description>•A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Dispersion lumped models are used.•The solution only depend on the transit time and the assumed lumped model parameters.
This work presents the analytical solution to the convolution integral by taking into account the most widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary functions that only depend on the aquifer mean transit time and the parameters belonging to the assumed lumped model.</description><subject>Aquifers</subject><subject>Constants</subject><subject>Convolution integral</subject><subject>Convolution integrals</subject><subject>Dispersions</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental tracers</subject><subject>Exact sciences and technology</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Karst hydrogeology</subject><subject>Lumped parameter models</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mean transit time</subject><subject>Tracers</subject><subject>Trends</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9q3DAQxk1poNukj1DQpdCLN5It_9GplJC0gUAv7Vlo5dFGiyy5GjnUr5SnrLy76TXVRejTb-Zj5iuKj4xuGWXt9WF7eFyGGNy2ooxnbUur7k2xYX0nyqqj3dtiQ2lVlawV_F3xHvFA86lrvimeb_8onYjyyi3JauUIBjcnGzwJhqRHIDr4pxfJ-gT7mCETItFOIR5Lju57CC7sj283jxMM5aSiGiFBJGMYwGF2GUhapiNj_TQnkqLS-d_MXq8GmGXiVZpXj2w0WPCJ4IIJRrwqLoxyCB_O92Xx6-7258338uHHt_ubrw-l4i1LZdMNVDdVb-qBsqY2wnTUGKpZ1Tasp7BjDaisAxN8Z1rd8541fc1ZCzutjKovi8-nvlMMv2fAJEeLGpxTHsKMkgkmRNuzjr-Oti2lgndC_AfKu5xez9euzQnVMSBGMHKKdlRxkYzKNXF5kOfE5Zr4KufEc92ns4XCvGITldcW_xVXgvY0T5u5LycuZwJPFqJEnRetYbARdJJDsK84_QUzgskM</recordid><startdate>20141127</startdate><enddate>20141127</enddate><creator>Jódar, Jorge</creator><creator>Lambán, Luis Javier</creator><creator>Medina, Agustín</creator><creator>Custodio, Emilio</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H97</scope></search><sort><creationdate>20141127</creationdate><title>Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems</title><author>Jódar, Jorge ; Lambán, Luis Javier ; Medina, Agustín ; Custodio, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aquifers</topic><topic>Constants</topic><topic>Convolution integral</topic><topic>Convolution integrals</topic><topic>Dispersions</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental tracers</topic><topic>Exact sciences and technology</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Karst hydrogeology</topic><topic>Lumped parameter models</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mean transit time</topic><topic>Tracers</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jódar, Jorge</creatorcontrib><creatorcontrib>Lambán, Luis Javier</creatorcontrib><creatorcontrib>Medina, Agustín</creatorcontrib><creatorcontrib>Custodio, Emilio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jódar, Jorge</au><au>Lambán, Luis Javier</au><au>Medina, Agustín</au><au>Custodio, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2014-11-27</date><risdate>2014</risdate><volume>519</volume><spage>3275</spage><epage>3289</epage><pages>3275-3289</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>•A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Dispersion lumped models are used.•The solution only depend on the transit time and the assumed lumped model parameters.
This work presents the analytical solution to the convolution integral by taking into account the most widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary functions that only depend on the aquifer mean transit time and the parameters belonging to the assumed lumped model.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2014.10.027</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2014-11, Vol.519, p.3275-3289 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919968174 |
source | Elsevier |
subjects | Aquifers Constants Convolution integral Convolution integrals Dispersions Earth sciences Earth, ocean, space Environmental tracers Exact sciences and technology Hydrogeology Hydrology. Hydrogeology Karst hydrogeology Lumped parameter models Mathematical analysis Mathematical models Mean transit time Tracers Trends |
title | Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20analytical%20solution%20of%20the%20convolution%20integral%20for%20classical%20hydrogeological%20lumped-parameter%20models%20and%20typical%20input%20tracer%20functions%20in%20natural%20gradient%20systems&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=J%C3%B3dar,%20Jorge&rft.date=2014-11-27&rft.volume=519&rft.spage=3275&rft.epage=3289&rft.pages=3275-3289&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2014.10.027&rft_dat=%3Cproquest_cross%3E1647014844%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647014844&rft_id=info:pmid/&rfr_iscdi=true |