Loading…

Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems

•A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Di...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 2014-11, Vol.519, p.3275-3289
Main Authors: Jódar, Jorge, Lambán, Luis Javier, Medina, Agustín, Custodio, Emilio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3
cites cdi_FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3
container_end_page 3289
container_issue
container_start_page 3275
container_title Journal of hydrology (Amsterdam)
container_volume 519
creator Jódar, Jorge
Lambán, Luis Javier
Medina, Agustín
Custodio, Emilio
description •A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Dispersion lumped models are used.•The solution only depend on the transit time and the assumed lumped model parameters. This work presents the analytical solution to the convolution integral by taking into account the most widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary functions that only depend on the aquifer mean transit time and the parameters belonging to the assumed lumped model.
doi_str_mv 10.1016/j.jhydrol.2014.10.027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919968174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002216941400821X</els_id><sourcerecordid>1647014844</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3</originalsourceid><addsrcrecordid>eNqNkc9q3DAQxk1poNukj1DQpdCLN5It_9GplJC0gUAv7Vlo5dFGiyy5GjnUr5SnrLy76TXVRejTb-Zj5iuKj4xuGWXt9WF7eFyGGNy2ooxnbUur7k2xYX0nyqqj3dtiQ2lVlawV_F3xHvFA86lrvimeb_8onYjyyi3JauUIBjcnGzwJhqRHIDr4pxfJ-gT7mCETItFOIR5Lju57CC7sj283jxMM5aSiGiFBJGMYwGF2GUhapiNj_TQnkqLS-d_MXq8GmGXiVZpXj2w0WPCJ4IIJRrwqLoxyCB_O92Xx6-7258338uHHt_ubrw-l4i1LZdMNVDdVb-qBsqY2wnTUGKpZ1Tasp7BjDaisAxN8Z1rd8541fc1ZCzutjKovi8-nvlMMv2fAJEeLGpxTHsKMkgkmRNuzjr-Oti2lgndC_AfKu5xez9euzQnVMSBGMHKKdlRxkYzKNXF5kOfE5Zr4KufEc92ns4XCvGITldcW_xVXgvY0T5u5LycuZwJPFqJEnRetYbARdJJDsK84_QUzgskM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647014844</pqid></control><display><type>article</type><title>Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems</title><source>Elsevier</source><creator>Jódar, Jorge ; Lambán, Luis Javier ; Medina, Agustín ; Custodio, Emilio</creator><creatorcontrib>Jódar, Jorge ; Lambán, Luis Javier ; Medina, Agustín ; Custodio, Emilio</creatorcontrib><description>•A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Dispersion lumped models are used.•The solution only depend on the transit time and the assumed lumped model parameters. This work presents the analytical solution to the convolution integral by taking into account the most widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary functions that only depend on the aquifer mean transit time and the parameters belonging to the assumed lumped model.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2014.10.027</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aquifers ; Constants ; Convolution integral ; Convolution integrals ; Dispersions ; Earth sciences ; Earth, ocean, space ; Environmental tracers ; Exact sciences and technology ; Hydrogeology ; Hydrology. Hydrogeology ; Karst hydrogeology ; Lumped parameter models ; Mathematical analysis ; Mathematical models ; Mean transit time ; Tracers ; Trends</subject><ispartof>Journal of hydrology (Amsterdam), 2014-11, Vol.519, p.3275-3289</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3</citedby><cites>FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29080848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jódar, Jorge</creatorcontrib><creatorcontrib>Lambán, Luis Javier</creatorcontrib><creatorcontrib>Medina, Agustín</creatorcontrib><creatorcontrib>Custodio, Emilio</creatorcontrib><title>Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems</title><title>Journal of hydrology (Amsterdam)</title><description>•A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Dispersion lumped models are used.•The solution only depend on the transit time and the assumed lumped model parameters. This work presents the analytical solution to the convolution integral by taking into account the most widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary functions that only depend on the aquifer mean transit time and the parameters belonging to the assumed lumped model.</description><subject>Aquifers</subject><subject>Constants</subject><subject>Convolution integral</subject><subject>Convolution integrals</subject><subject>Dispersions</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental tracers</subject><subject>Exact sciences and technology</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Karst hydrogeology</subject><subject>Lumped parameter models</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mean transit time</subject><subject>Tracers</subject><subject>Trends</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9q3DAQxk1poNukj1DQpdCLN5It_9GplJC0gUAv7Vlo5dFGiyy5GjnUr5SnrLy76TXVRejTb-Zj5iuKj4xuGWXt9WF7eFyGGNy2ooxnbUur7k2xYX0nyqqj3dtiQ2lVlawV_F3xHvFA86lrvimeb_8onYjyyi3JauUIBjcnGzwJhqRHIDr4pxfJ-gT7mCETItFOIR5Lju57CC7sj283jxMM5aSiGiFBJGMYwGF2GUhapiNj_TQnkqLS-d_MXq8GmGXiVZpXj2w0WPCJ4IIJRrwqLoxyCB_O92Xx6-7258338uHHt_ubrw-l4i1LZdMNVDdVb-qBsqY2wnTUGKpZ1Tasp7BjDaisAxN8Z1rd8541fc1ZCzutjKovi8-nvlMMv2fAJEeLGpxTHsKMkgkmRNuzjr-Oti2lgndC_AfKu5xez9euzQnVMSBGMHKKdlRxkYzKNXF5kOfE5Zr4KufEc92ns4XCvGITldcW_xVXgvY0T5u5LycuZwJPFqJEnRetYbARdJJDsK84_QUzgskM</recordid><startdate>20141127</startdate><enddate>20141127</enddate><creator>Jódar, Jorge</creator><creator>Lambán, Luis Javier</creator><creator>Medina, Agustín</creator><creator>Custodio, Emilio</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H97</scope></search><sort><creationdate>20141127</creationdate><title>Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems</title><author>Jódar, Jorge ; Lambán, Luis Javier ; Medina, Agustín ; Custodio, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aquifers</topic><topic>Constants</topic><topic>Convolution integral</topic><topic>Convolution integrals</topic><topic>Dispersions</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental tracers</topic><topic>Exact sciences and technology</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Karst hydrogeology</topic><topic>Lumped parameter models</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mean transit time</topic><topic>Tracers</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jódar, Jorge</creatorcontrib><creatorcontrib>Lambán, Luis Javier</creatorcontrib><creatorcontrib>Medina, Agustín</creatorcontrib><creatorcontrib>Custodio, Emilio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jódar, Jorge</au><au>Lambán, Luis Javier</au><au>Medina, Agustín</au><au>Custodio, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2014-11-27</date><risdate>2014</risdate><volume>519</volume><spage>3275</spage><epage>3289</epage><pages>3275-3289</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>•A set of exact analytical solutions of the convolution integral is presented.•The synthetic functions are expressed in terms of elementary mathematical functions.•The synthetic functions are easily adapted to represent real input tracer functions.•Piston flow, Exponential, Piston-Exponential and Dispersion lumped models are used.•The solution only depend on the transit time and the assumed lumped model parameters. This work presents the analytical solution to the convolution integral by taking into account the most widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary functions that only depend on the aquifer mean transit time and the parameters belonging to the assumed lumped model.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2014.10.027</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2014-11, Vol.519, p.3275-3289
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_1919968174
source Elsevier
subjects Aquifers
Constants
Convolution integral
Convolution integrals
Dispersions
Earth sciences
Earth, ocean, space
Environmental tracers
Exact sciences and technology
Hydrogeology
Hydrology. Hydrogeology
Karst hydrogeology
Lumped parameter models
Mathematical analysis
Mathematical models
Mean transit time
Tracers
Trends
title Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20analytical%20solution%20of%20the%20convolution%20integral%20for%20classical%20hydrogeological%20lumped-parameter%20models%20and%20typical%20input%20tracer%20functions%20in%20natural%20gradient%20systems&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=J%C3%B3dar,%20Jorge&rft.date=2014-11-27&rft.volume=519&rft.spage=3275&rft.epage=3289&rft.pages=3275-3289&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2014.10.027&rft_dat=%3Cproquest_cross%3E1647014844%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a461t-57d0c528f3d0153f9f70ff0c1265180eb15ea53fe194bf6c8481583416ebcafa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647014844&rft_id=info:pmid/&rfr_iscdi=true