Loading…
Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words
About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical exper...
Saved in:
Published in: | Expert systems 2015-12, Vol.32 (6), p.688-697 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503 |
---|---|
cites | cdi_FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503 |
container_end_page | 697 |
container_issue | 6 |
container_start_page | 688 |
container_title | Expert systems |
container_volume | 32 |
creator | Orozco-Arroyave, J. R. Hönig, Florian Arias-Londoño, J. D. Vargas-Bonilla, J. F. Nöth, Elmar |
description | About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical experts to perform a more accurate and objective diagnosis and monitoring of PD patients and can help also to evaluate the correctness and progress of their therapy. Although there are several studies that consider spectral and cepstral information to perform automatic classification of speech of people with PD, so far it is not known which is the most discriminative, spectral or cepstral analysis. In this paper, the discriminant capability of six sets of spectral and cepstral coefficients is evaluated, considering speech recordings of the five Spanish vowels and a total of 24 isolated words. According to the results, linear predictive cepstral coefficients are the most robust and exhibit values of the area under the receiver operating characteristic curve above 0.85 in 6 of the 24 words. |
doi_str_mv | 10.1111/exsy.12106 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919971239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800490003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503</originalsourceid><addsrcrecordid>eNqFkU9LHEEQxRtJwI3m4ido8JAQGK2e6ek_xyBGhcUENyERhKZ3poa0jtOTrt2s--3T6xoPOZiCoij4vQdVj7EDAUci1zE-0PpIlALUDpsIqUwBlZWv2ARKpQqpS9hlb4huAUBorSbsZjZis0i-535oeYMjPS2-XxMS72LiX3y6CwPF4R3xNhB6Qt7iIutCHHgY-Gz0Q6Cf_HdcYU-PTquYWtpnrzvfE759mnvs26fTryfnxfTz2cXJx2nRSKhVUUmjbI3Cd6ZVpYZOzm3Tza1qjG3a2nRtNzcetDDC1DJfAmiUQiM2INRQ7bH3W98xxV9LpIW7D9Rg3_sB45KcsMJaLcrK_h81ANLm91QZPfwHvY3LlB-TKV1nT2nNxvDDlmpSJErYuTGFe5_WToDbZOI2mbjHTDIstvAq9Lh-gXSnP2bXfzXFVhNogQ_PmpyJU7rStft-eebqqaguc7ur6g9LJ5zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751914989</pqid></control><display><type>article</type><title>Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley</source><creator>Orozco-Arroyave, J. R. ; Hönig, Florian ; Arias-Londoño, J. D. ; Vargas-Bonilla, J. F. ; Nöth, Elmar</creator><creatorcontrib>Orozco-Arroyave, J. R. ; Hönig, Florian ; Arias-Londoño, J. D. ; Vargas-Bonilla, J. F. ; Nöth, Elmar</creatorcontrib><description>About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical experts to perform a more accurate and objective diagnosis and monitoring of PD patients and can help also to evaluate the correctness and progress of their therapy. Although there are several studies that consider spectral and cepstral information to perform automatic classification of speech of people with PD, so far it is not known which is the most discriminative, spectral or cepstral analysis. In this paper, the discriminant capability of six sets of spectral and cepstral coefficients is evaluated, considering speech recordings of the five Spanish vowels and a total of 24 isolated words. According to the results, linear predictive cepstral coefficients are the most robust and exhibit values of the area under the receiver operating characteristic curve above 0.85 in 6 of the 24 words.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12106</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Analysis ; Automation ; Cepstral analysis ; linear prediction ; Medical diagnosis ; Monitoring systems ; Parkinson's disease ; Patients ; Recording ; relative spectra analysis ; Spanish language ; Spectra ; Speech ; Speech disorders ; speech spectrum ; Studies ; Vowels</subject><ispartof>Expert systems, 2015-12, Vol.32 (6), p.688-697</ispartof><rights>2015 Wiley Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503</citedby><cites>FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Orozco-Arroyave, J. R.</creatorcontrib><creatorcontrib>Hönig, Florian</creatorcontrib><creatorcontrib>Arias-Londoño, J. D.</creatorcontrib><creatorcontrib>Vargas-Bonilla, J. F.</creatorcontrib><creatorcontrib>Nöth, Elmar</creatorcontrib><title>Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words</title><title>Expert systems</title><addtitle>Expert Systems</addtitle><description>About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical experts to perform a more accurate and objective diagnosis and monitoring of PD patients and can help also to evaluate the correctness and progress of their therapy. Although there are several studies that consider spectral and cepstral information to perform automatic classification of speech of people with PD, so far it is not known which is the most discriminative, spectral or cepstral analysis. In this paper, the discriminant capability of six sets of spectral and cepstral coefficients is evaluated, considering speech recordings of the five Spanish vowels and a total of 24 isolated words. According to the results, linear predictive cepstral coefficients are the most robust and exhibit values of the area under the receiver operating characteristic curve above 0.85 in 6 of the 24 words.</description><subject>Analysis</subject><subject>Automation</subject><subject>Cepstral analysis</subject><subject>linear prediction</subject><subject>Medical diagnosis</subject><subject>Monitoring systems</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Recording</subject><subject>relative spectra analysis</subject><subject>Spanish language</subject><subject>Spectra</subject><subject>Speech</subject><subject>Speech disorders</subject><subject>speech spectrum</subject><subject>Studies</subject><subject>Vowels</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LHEEQxRtJwI3m4ido8JAQGK2e6ek_xyBGhcUENyERhKZ3poa0jtOTrt2s--3T6xoPOZiCoij4vQdVj7EDAUci1zE-0PpIlALUDpsIqUwBlZWv2ARKpQqpS9hlb4huAUBorSbsZjZis0i-535oeYMjPS2-XxMS72LiX3y6CwPF4R3xNhB6Qt7iIutCHHgY-Gz0Q6Cf_HdcYU-PTquYWtpnrzvfE759mnvs26fTryfnxfTz2cXJx2nRSKhVUUmjbI3Cd6ZVpYZOzm3Tza1qjG3a2nRtNzcetDDC1DJfAmiUQiM2INRQ7bH3W98xxV9LpIW7D9Rg3_sB45KcsMJaLcrK_h81ANLm91QZPfwHvY3LlB-TKV1nT2nNxvDDlmpSJErYuTGFe5_WToDbZOI2mbjHTDIstvAq9Lh-gXSnP2bXfzXFVhNogQ_PmpyJU7rStft-eebqqaguc7ur6g9LJ5zA</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Orozco-Arroyave, J. R.</creator><creator>Hönig, Florian</creator><creator>Arias-Londoño, J. D.</creator><creator>Vargas-Bonilla, J. F.</creator><creator>Nöth, Elmar</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope></search><sort><creationdate>201512</creationdate><title>Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words</title><author>Orozco-Arroyave, J. R. ; Hönig, Florian ; Arias-Londoño, J. D. ; Vargas-Bonilla, J. F. ; Nöth, Elmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Automation</topic><topic>Cepstral analysis</topic><topic>linear prediction</topic><topic>Medical diagnosis</topic><topic>Monitoring systems</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Recording</topic><topic>relative spectra analysis</topic><topic>Spanish language</topic><topic>Spectra</topic><topic>Speech</topic><topic>Speech disorders</topic><topic>speech spectrum</topic><topic>Studies</topic><topic>Vowels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orozco-Arroyave, J. R.</creatorcontrib><creatorcontrib>Hönig, Florian</creatorcontrib><creatorcontrib>Arias-Londoño, J. D.</creatorcontrib><creatorcontrib>Vargas-Bonilla, J. F.</creatorcontrib><creatorcontrib>Nöth, Elmar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orozco-Arroyave, J. R.</au><au>Hönig, Florian</au><au>Arias-Londoño, J. D.</au><au>Vargas-Bonilla, J. F.</au><au>Nöth, Elmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words</atitle><jtitle>Expert systems</jtitle><addtitle>Expert Systems</addtitle><date>2015-12</date><risdate>2015</risdate><volume>32</volume><issue>6</issue><spage>688</spage><epage>697</epage><pages>688-697</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical experts to perform a more accurate and objective diagnosis and monitoring of PD patients and can help also to evaluate the correctness and progress of their therapy. Although there are several studies that consider spectral and cepstral information to perform automatic classification of speech of people with PD, so far it is not known which is the most discriminative, spectral or cepstral analysis. In this paper, the discriminant capability of six sets of spectral and cepstral coefficients is evaluated, considering speech recordings of the five Spanish vowels and a total of 24 isolated words. According to the results, linear predictive cepstral coefficients are the most robust and exhibit values of the area under the receiver operating characteristic curve above 0.85 in 6 of the 24 words.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12106</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4720 |
ispartof | Expert systems, 2015-12, Vol.32 (6), p.688-697 |
issn | 0266-4720 1468-0394 |
language | eng |
recordid | cdi_proquest_miscellaneous_1919971239 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley |
subjects | Analysis Automation Cepstral analysis linear prediction Medical diagnosis Monitoring systems Parkinson's disease Patients Recording relative spectra analysis Spanish language Spectra Speech Speech disorders speech spectrum Studies Vowels |
title | Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20and%20cepstral%20analyses%20for%20Parkinson's%20disease%20detection%20in%20Spanish%20vowels%20and%20words&rft.jtitle=Expert%20systems&rft.au=Orozco-Arroyave,%20J.%20R.&rft.date=2015-12&rft.volume=32&rft.issue=6&rft.spage=688&rft.epage=697&rft.pages=688-697&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12106&rft_dat=%3Cproquest_cross%3E1800490003%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751914989&rft_id=info:pmid/&rfr_iscdi=true |