Loading…

Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words

About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical exper...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems 2015-12, Vol.32 (6), p.688-697
Main Authors: Orozco-Arroyave, J. R., Hönig, Florian, Arias-Londoño, J. D., Vargas-Bonilla, J. F., Nöth, Elmar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503
cites cdi_FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503
container_end_page 697
container_issue 6
container_start_page 688
container_title Expert systems
container_volume 32
creator Orozco-Arroyave, J. R.
Hönig, Florian
Arias-Londoño, J. D.
Vargas-Bonilla, J. F.
Nöth, Elmar
description About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical experts to perform a more accurate and objective diagnosis and monitoring of PD patients and can help also to evaluate the correctness and progress of their therapy. Although there are several studies that consider spectral and cepstral information to perform automatic classification of speech of people with PD, so far it is not known which is the most discriminative, spectral or cepstral analysis. In this paper, the discriminant capability of six sets of spectral and cepstral coefficients is evaluated, considering speech recordings of the five Spanish vowels and a total of 24 isolated words. According to the results, linear predictive cepstral coefficients are the most robust and exhibit values of the area under the receiver operating characteristic curve above 0.85 in 6 of the 24 words.
doi_str_mv 10.1111/exsy.12106
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1919971239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800490003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503</originalsourceid><addsrcrecordid>eNqFkU9LHEEQxRtJwI3m4ido8JAQGK2e6ek_xyBGhcUENyERhKZ3poa0jtOTrt2s--3T6xoPOZiCoij4vQdVj7EDAUci1zE-0PpIlALUDpsIqUwBlZWv2ARKpQqpS9hlb4huAUBorSbsZjZis0i-535oeYMjPS2-XxMS72LiX3y6CwPF4R3xNhB6Qt7iIutCHHgY-Gz0Q6Cf_HdcYU-PTquYWtpnrzvfE759mnvs26fTryfnxfTz2cXJx2nRSKhVUUmjbI3Cd6ZVpYZOzm3Tza1qjG3a2nRtNzcetDDC1DJfAmiUQiM2INRQ7bH3W98xxV9LpIW7D9Rg3_sB45KcsMJaLcrK_h81ANLm91QZPfwHvY3LlB-TKV1nT2nNxvDDlmpSJErYuTGFe5_WToDbZOI2mbjHTDIstvAq9Lh-gXSnP2bXfzXFVhNogQ_PmpyJU7rStft-eebqqaguc7ur6g9LJ5zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751914989</pqid></control><display><type>article</type><title>Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley</source><creator>Orozco-Arroyave, J. R. ; Hönig, Florian ; Arias-Londoño, J. D. ; Vargas-Bonilla, J. F. ; Nöth, Elmar</creator><creatorcontrib>Orozco-Arroyave, J. R. ; Hönig, Florian ; Arias-Londoño, J. D. ; Vargas-Bonilla, J. F. ; Nöth, Elmar</creatorcontrib><description>About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical experts to perform a more accurate and objective diagnosis and monitoring of PD patients and can help also to evaluate the correctness and progress of their therapy. Although there are several studies that consider spectral and cepstral information to perform automatic classification of speech of people with PD, so far it is not known which is the most discriminative, spectral or cepstral analysis. In this paper, the discriminant capability of six sets of spectral and cepstral coefficients is evaluated, considering speech recordings of the five Spanish vowels and a total of 24 isolated words. According to the results, linear predictive cepstral coefficients are the most robust and exhibit values of the area under the receiver operating characteristic curve above 0.85 in 6 of the 24 words.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12106</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Analysis ; Automation ; Cepstral analysis ; linear prediction ; Medical diagnosis ; Monitoring systems ; Parkinson's disease ; Patients ; Recording ; relative spectra analysis ; Spanish language ; Spectra ; Speech ; Speech disorders ; speech spectrum ; Studies ; Vowels</subject><ispartof>Expert systems, 2015-12, Vol.32 (6), p.688-697</ispartof><rights>2015 Wiley Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503</citedby><cites>FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Orozco-Arroyave, J. R.</creatorcontrib><creatorcontrib>Hönig, Florian</creatorcontrib><creatorcontrib>Arias-Londoño, J. D.</creatorcontrib><creatorcontrib>Vargas-Bonilla, J. F.</creatorcontrib><creatorcontrib>Nöth, Elmar</creatorcontrib><title>Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words</title><title>Expert systems</title><addtitle>Expert Systems</addtitle><description>About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical experts to perform a more accurate and objective diagnosis and monitoring of PD patients and can help also to evaluate the correctness and progress of their therapy. Although there are several studies that consider spectral and cepstral information to perform automatic classification of speech of people with PD, so far it is not known which is the most discriminative, spectral or cepstral analysis. In this paper, the discriminant capability of six sets of spectral and cepstral coefficients is evaluated, considering speech recordings of the five Spanish vowels and a total of 24 isolated words. According to the results, linear predictive cepstral coefficients are the most robust and exhibit values of the area under the receiver operating characteristic curve above 0.85 in 6 of the 24 words.</description><subject>Analysis</subject><subject>Automation</subject><subject>Cepstral analysis</subject><subject>linear prediction</subject><subject>Medical diagnosis</subject><subject>Monitoring systems</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Recording</subject><subject>relative spectra analysis</subject><subject>Spanish language</subject><subject>Spectra</subject><subject>Speech</subject><subject>Speech disorders</subject><subject>speech spectrum</subject><subject>Studies</subject><subject>Vowels</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LHEEQxRtJwI3m4ido8JAQGK2e6ek_xyBGhcUENyERhKZ3poa0jtOTrt2s--3T6xoPOZiCoij4vQdVj7EDAUci1zE-0PpIlALUDpsIqUwBlZWv2ARKpQqpS9hlb4huAUBorSbsZjZis0i-535oeYMjPS2-XxMS72LiX3y6CwPF4R3xNhB6Qt7iIutCHHgY-Gz0Q6Cf_HdcYU-PTquYWtpnrzvfE759mnvs26fTryfnxfTz2cXJx2nRSKhVUUmjbI3Cd6ZVpYZOzm3Tza1qjG3a2nRtNzcetDDC1DJfAmiUQiM2INRQ7bH3W98xxV9LpIW7D9Rg3_sB45KcsMJaLcrK_h81ANLm91QZPfwHvY3LlB-TKV1nT2nNxvDDlmpSJErYuTGFe5_WToDbZOI2mbjHTDIstvAq9Lh-gXSnP2bXfzXFVhNogQ_PmpyJU7rStft-eebqqaguc7ur6g9LJ5zA</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Orozco-Arroyave, J. R.</creator><creator>Hönig, Florian</creator><creator>Arias-Londoño, J. D.</creator><creator>Vargas-Bonilla, J. F.</creator><creator>Nöth, Elmar</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope></search><sort><creationdate>201512</creationdate><title>Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words</title><author>Orozco-Arroyave, J. R. ; Hönig, Florian ; Arias-Londoño, J. D. ; Vargas-Bonilla, J. F. ; Nöth, Elmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Automation</topic><topic>Cepstral analysis</topic><topic>linear prediction</topic><topic>Medical diagnosis</topic><topic>Monitoring systems</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Recording</topic><topic>relative spectra analysis</topic><topic>Spanish language</topic><topic>Spectra</topic><topic>Speech</topic><topic>Speech disorders</topic><topic>speech spectrum</topic><topic>Studies</topic><topic>Vowels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orozco-Arroyave, J. R.</creatorcontrib><creatorcontrib>Hönig, Florian</creatorcontrib><creatorcontrib>Arias-Londoño, J. D.</creatorcontrib><creatorcontrib>Vargas-Bonilla, J. F.</creatorcontrib><creatorcontrib>Nöth, Elmar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orozco-Arroyave, J. R.</au><au>Hönig, Florian</au><au>Arias-Londoño, J. D.</au><au>Vargas-Bonilla, J. F.</au><au>Nöth, Elmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words</atitle><jtitle>Expert systems</jtitle><addtitle>Expert Systems</addtitle><date>2015-12</date><risdate>2015</risdate><volume>32</volume><issue>6</issue><spage>688</spage><epage>697</epage><pages>688-697</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>About 1% of people older than 65 years suffer from Parkinson's disease (PD) and 90% of them develop several speech impairments, affecting phonation, articulation, prosody and fluency. Computer‐aided tools for the automatic evaluation of speech can provide useful information to the medical experts to perform a more accurate and objective diagnosis and monitoring of PD patients and can help also to evaluate the correctness and progress of their therapy. Although there are several studies that consider spectral and cepstral information to perform automatic classification of speech of people with PD, so far it is not known which is the most discriminative, spectral or cepstral analysis. In this paper, the discriminant capability of six sets of spectral and cepstral coefficients is evaluated, considering speech recordings of the five Spanish vowels and a total of 24 isolated words. According to the results, linear predictive cepstral coefficients are the most robust and exhibit values of the area under the receiver operating characteristic curve above 0.85 in 6 of the 24 words.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12106</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2015-12, Vol.32 (6), p.688-697
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_miscellaneous_1919971239
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley
subjects Analysis
Automation
Cepstral analysis
linear prediction
Medical diagnosis
Monitoring systems
Parkinson's disease
Patients
Recording
relative spectra analysis
Spanish language
Spectra
Speech
Speech disorders
speech spectrum
Studies
Vowels
title Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20and%20cepstral%20analyses%20for%20Parkinson's%20disease%20detection%20in%20Spanish%20vowels%20and%20words&rft.jtitle=Expert%20systems&rft.au=Orozco-Arroyave,%20J.%20R.&rft.date=2015-12&rft.volume=32&rft.issue=6&rft.spage=688&rft.epage=697&rft.pages=688-697&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12106&rft_dat=%3Cproquest_cross%3E1800490003%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4056-348695e1af8d6270f4b9cfb96c89cd58fdfb8a071818540260e866e81f4b90503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751914989&rft_id=info:pmid/&rfr_iscdi=true