Loading…

Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm

Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language process...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nursing measurement 2016-01, Vol.24 (3), p.419-427
Main Authors: Brennan, Caitlin W., Meng, Frank, Meterko, Mark M., D'Avolio, Leonard W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083
container_end_page 427
container_issue 3
container_start_page 419
container_title Journal of nursing measurement
container_volume 24
creator Brennan, Caitlin W.
Meng, Frank
Meterko, Mark M.
D'Avolio, Leonard W.
description Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language processing combined with a machine learning algorithm was used to predict acuity levels based on electronic health record data. Results: The algorithm was able to predict acuity relatively well. A main challenge was discordance among nurse raters of acuity in generating a gold standard of acuity before applying the machine learning algorithm. Conclusions: This pilot study tested applying machine learning techniques to acuity measurement and yielded a moderate level of performance. Higher agreement among the gold standard may yield higher performance in future studies.
doi_str_mv 10.1891/1061-3749.24.3.419
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920194124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920194124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EoqXwAgwoI0uC7TixzVZVFJBawUDFaNmu06ZK7GInQ98eR20Zme50990v3QfAPYIZYhw9IViiNKeEZ5hkeUYQvwBjxEmRUkj4ZezPwAjchLCDMC_ykl-DEWYUEULoGHzPjQy1qpu6OySuSqZ951rZ1XaTfMZibJdMdT8slxHsvWmH0SoMgEyWUm9ra5KFkd4Oo2mzcb7utu0tuKpkE8zdqU7Aav7yNXtLFx-v77PpItU5LLq0wgRDjaQuqxxiwtaUKYMLrblSjGpKdMlKzrliDJUDqhXijBullaIVZPkEPB5z99799CZ0oq2DNk0jrXF9EIhjGJUgTCKKj6j2LgRvKrH3dSv9QSAoBqFi8CUGXwITkYsoNB49nPJ71Zr138nZYASej0CIK7sxXrt2L-1B7FzvbXz9v_RffOuD0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920194124</pqid></control><display><type>article</type><title>Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm</title><source>Social Science Premium Collection</source><source>Sociology Collection</source><creator>Brennan, Caitlin W. ; Meng, Frank ; Meterko, Mark M. ; D'Avolio, Leonard W.</creator><creatorcontrib>Brennan, Caitlin W. ; Meng, Frank ; Meterko, Mark M. ; D'Avolio, Leonard W.</creatorcontrib><description>Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language processing combined with a machine learning algorithm was used to predict acuity levels based on electronic health record data. Results: The algorithm was able to predict acuity relatively well. A main challenge was discordance among nurse raters of acuity in generating a gold standard of acuity before applying the machine learning algorithm. Conclusions: This pilot study tested applying machine learning techniques to acuity measurement and yielded a moderate level of performance. Higher agreement among the gold standard may yield higher performance in future studies.</description><identifier>ISSN: 1061-3749</identifier><identifier>EISSN: 1945-7049</identifier><identifier>DOI: 10.1891/1061-3749.24.3.419</identifier><identifier>PMID: 28714447</identifier><language>eng</language><publisher>United States: Springer Publishing Company</publisher><subject>Administration, Management, and Leadership ; Algorithms ; Artificial Intelligence ; Electronic Health Records ; Humans ; Natural Language Processing ; Nursing ; Nursing Education ; Nursing Process - standards ; Patient Acuity ; Pilot Projects ; Predictive Value of Tests ; Professional Issues and Trends ; Reproducibility of Results ; Workload</subject><ispartof>Journal of nursing measurement, 2016-01, Vol.24 (3), p.419-427</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,33591,34510</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28714447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brennan, Caitlin W.</creatorcontrib><creatorcontrib>Meng, Frank</creatorcontrib><creatorcontrib>Meterko, Mark M.</creatorcontrib><creatorcontrib>D'Avolio, Leonard W.</creatorcontrib><title>Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm</title><title>Journal of nursing measurement</title><addtitle>J Nurs Meas</addtitle><description>Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language processing combined with a machine learning algorithm was used to predict acuity levels based on electronic health record data. Results: The algorithm was able to predict acuity relatively well. A main challenge was discordance among nurse raters of acuity in generating a gold standard of acuity before applying the machine learning algorithm. Conclusions: This pilot study tested applying machine learning techniques to acuity measurement and yielded a moderate level of performance. Higher agreement among the gold standard may yield higher performance in future studies.</description><subject>Administration, Management, and Leadership</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>Natural Language Processing</subject><subject>Nursing</subject><subject>Nursing Education</subject><subject>Nursing Process - standards</subject><subject>Patient Acuity</subject><subject>Pilot Projects</subject><subject>Predictive Value of Tests</subject><subject>Professional Issues and Trends</subject><subject>Reproducibility of Results</subject><subject>Workload</subject><issn>1061-3749</issn><issn>1945-7049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EoqXwAgwoI0uC7TixzVZVFJBawUDFaNmu06ZK7GInQ98eR20Zme50990v3QfAPYIZYhw9IViiNKeEZ5hkeUYQvwBjxEmRUkj4ZezPwAjchLCDMC_ykl-DEWYUEULoGHzPjQy1qpu6OySuSqZ951rZ1XaTfMZibJdMdT8slxHsvWmH0SoMgEyWUm9ra5KFkd4Oo2mzcb7utu0tuKpkE8zdqU7Aav7yNXtLFx-v77PpItU5LLq0wgRDjaQuqxxiwtaUKYMLrblSjGpKdMlKzrliDJUDqhXijBullaIVZPkEPB5z99799CZ0oq2DNk0jrXF9EIhjGJUgTCKKj6j2LgRvKrH3dSv9QSAoBqFi8CUGXwITkYsoNB49nPJ71Zr138nZYASej0CIK7sxXrt2L-1B7FzvbXz9v_RffOuD0Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Brennan, Caitlin W.</creator><creator>Meng, Frank</creator><creator>Meterko, Mark M.</creator><creator>D'Avolio, Leonard W.</creator><general>Springer Publishing Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm</title><author>Brennan, Caitlin W. ; Meng, Frank ; Meterko, Mark M. ; D'Avolio, Leonard W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Administration, Management, and Leadership</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>Natural Language Processing</topic><topic>Nursing</topic><topic>Nursing Education</topic><topic>Nursing Process - standards</topic><topic>Patient Acuity</topic><topic>Pilot Projects</topic><topic>Predictive Value of Tests</topic><topic>Professional Issues and Trends</topic><topic>Reproducibility of Results</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennan, Caitlin W.</creatorcontrib><creatorcontrib>Meng, Frank</creatorcontrib><creatorcontrib>Meterko, Mark M.</creatorcontrib><creatorcontrib>D'Avolio, Leonard W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of nursing measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennan, Caitlin W.</au><au>Meng, Frank</au><au>Meterko, Mark M.</au><au>D'Avolio, Leonard W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm</atitle><jtitle>Journal of nursing measurement</jtitle><addtitle>J Nurs Meas</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>24</volume><issue>3</issue><spage>419</spage><epage>427</epage><pages>419-427</pages><issn>1061-3749</issn><eissn>1945-7049</eissn><abstract>Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language processing combined with a machine learning algorithm was used to predict acuity levels based on electronic health record data. Results: The algorithm was able to predict acuity relatively well. A main challenge was discordance among nurse raters of acuity in generating a gold standard of acuity before applying the machine learning algorithm. Conclusions: This pilot study tested applying machine learning techniques to acuity measurement and yielded a moderate level of performance. Higher agreement among the gold standard may yield higher performance in future studies.</abstract><cop>United States</cop><pub>Springer Publishing Company</pub><pmid>28714447</pmid><doi>10.1891/1061-3749.24.3.419</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-3749
ispartof Journal of nursing measurement, 2016-01, Vol.24 (3), p.419-427
issn 1061-3749
1945-7049
language eng
recordid cdi_proquest_miscellaneous_1920194124
source Social Science Premium Collection; Sociology Collection
subjects Administration, Management, and Leadership
Algorithms
Artificial Intelligence
Electronic Health Records
Humans
Natural Language Processing
Nursing
Nursing Education
Nursing Process - standards
Patient Acuity
Pilot Projects
Predictive Value of Tests
Professional Issues and Trends
Reproducibility of Results
Workload
title Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20Automating%20Patient%20Acuity%20Measurement%20Using%20a%20Machine%20Learning%20Algorithm&rft.jtitle=Journal%20of%20nursing%20measurement&rft.au=Brennan,%20Caitlin%20W.&rft.date=2016-01-01&rft.volume=24&rft.issue=3&rft.spage=419&rft.epage=427&rft.pages=419-427&rft.issn=1061-3749&rft.eissn=1945-7049&rft_id=info:doi/10.1891/1061-3749.24.3.419&rft_dat=%3Cproquest_cross%3E1920194124%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920194124&rft_id=info:pmid/28714447&rfr_iscdi=true