Loading…
Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm
Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language process...
Saved in:
Published in: | Journal of nursing measurement 2016-01, Vol.24 (3), p.419-427 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083 |
container_end_page | 427 |
container_issue | 3 |
container_start_page | 419 |
container_title | Journal of nursing measurement |
container_volume | 24 |
creator | Brennan, Caitlin W. Meng, Frank Meterko, Mark M. D'Avolio, Leonard W. |
description | Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language processing combined with a machine learning algorithm was used to predict acuity levels based on electronic health record data. Results: The algorithm was able to predict acuity relatively well. A main challenge was discordance among nurse raters of acuity in generating a gold standard of acuity before applying the machine learning algorithm. Conclusions: This pilot study tested applying machine learning techniques to acuity measurement and yielded a moderate level of performance. Higher agreement among the gold standard may yield higher performance in future studies. |
doi_str_mv | 10.1891/1061-3749.24.3.419 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920194124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920194124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EoqXwAgwoI0uC7TixzVZVFJBawUDFaNmu06ZK7GInQ98eR20Zme50990v3QfAPYIZYhw9IViiNKeEZ5hkeUYQvwBjxEmRUkj4ZezPwAjchLCDMC_ykl-DEWYUEULoGHzPjQy1qpu6OySuSqZ951rZ1XaTfMZibJdMdT8slxHsvWmH0SoMgEyWUm9ra5KFkd4Oo2mzcb7utu0tuKpkE8zdqU7Aav7yNXtLFx-v77PpItU5LLq0wgRDjaQuqxxiwtaUKYMLrblSjGpKdMlKzrliDJUDqhXijBullaIVZPkEPB5z99799CZ0oq2DNk0jrXF9EIhjGJUgTCKKj6j2LgRvKrH3dSv9QSAoBqFi8CUGXwITkYsoNB49nPJ71Zr138nZYASej0CIK7sxXrt2L-1B7FzvbXz9v_RffOuD0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920194124</pqid></control><display><type>article</type><title>Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm</title><source>Social Science Premium Collection</source><source>Sociology Collection</source><creator>Brennan, Caitlin W. ; Meng, Frank ; Meterko, Mark M. ; D'Avolio, Leonard W.</creator><creatorcontrib>Brennan, Caitlin W. ; Meng, Frank ; Meterko, Mark M. ; D'Avolio, Leonard W.</creatorcontrib><description>Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language processing combined with a machine learning algorithm was used to predict acuity levels based on electronic health record data. Results: The algorithm was able to predict acuity relatively well. A main challenge was discordance among nurse raters of acuity in generating a gold standard of acuity before applying the machine learning algorithm. Conclusions: This pilot study tested applying machine learning techniques to acuity measurement and yielded a moderate level of performance. Higher agreement among the gold standard may yield higher performance in future studies.</description><identifier>ISSN: 1061-3749</identifier><identifier>EISSN: 1945-7049</identifier><identifier>DOI: 10.1891/1061-3749.24.3.419</identifier><identifier>PMID: 28714447</identifier><language>eng</language><publisher>United States: Springer Publishing Company</publisher><subject>Administration, Management, and Leadership ; Algorithms ; Artificial Intelligence ; Electronic Health Records ; Humans ; Natural Language Processing ; Nursing ; Nursing Education ; Nursing Process - standards ; Patient Acuity ; Pilot Projects ; Predictive Value of Tests ; Professional Issues and Trends ; Reproducibility of Results ; Workload</subject><ispartof>Journal of nursing measurement, 2016-01, Vol.24 (3), p.419-427</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,33591,34510</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28714447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brennan, Caitlin W.</creatorcontrib><creatorcontrib>Meng, Frank</creatorcontrib><creatorcontrib>Meterko, Mark M.</creatorcontrib><creatorcontrib>D'Avolio, Leonard W.</creatorcontrib><title>Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm</title><title>Journal of nursing measurement</title><addtitle>J Nurs Meas</addtitle><description>Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language processing combined with a machine learning algorithm was used to predict acuity levels based on electronic health record data. Results: The algorithm was able to predict acuity relatively well. A main challenge was discordance among nurse raters of acuity in generating a gold standard of acuity before applying the machine learning algorithm. Conclusions: This pilot study tested applying machine learning techniques to acuity measurement and yielded a moderate level of performance. Higher agreement among the gold standard may yield higher performance in future studies.</description><subject>Administration, Management, and Leadership</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>Natural Language Processing</subject><subject>Nursing</subject><subject>Nursing Education</subject><subject>Nursing Process - standards</subject><subject>Patient Acuity</subject><subject>Pilot Projects</subject><subject>Predictive Value of Tests</subject><subject>Professional Issues and Trends</subject><subject>Reproducibility of Results</subject><subject>Workload</subject><issn>1061-3749</issn><issn>1945-7049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EoqXwAgwoI0uC7TixzVZVFJBawUDFaNmu06ZK7GInQ98eR20Zme50990v3QfAPYIZYhw9IViiNKeEZ5hkeUYQvwBjxEmRUkj4ZezPwAjchLCDMC_ykl-DEWYUEULoGHzPjQy1qpu6OySuSqZ951rZ1XaTfMZibJdMdT8slxHsvWmH0SoMgEyWUm9ra5KFkd4Oo2mzcb7utu0tuKpkE8zdqU7Aav7yNXtLFx-v77PpItU5LLq0wgRDjaQuqxxiwtaUKYMLrblSjGpKdMlKzrliDJUDqhXijBullaIVZPkEPB5z99799CZ0oq2DNk0jrXF9EIhjGJUgTCKKj6j2LgRvKrH3dSv9QSAoBqFi8CUGXwITkYsoNB49nPJ71Zr138nZYASej0CIK7sxXrt2L-1B7FzvbXz9v_RffOuD0Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Brennan, Caitlin W.</creator><creator>Meng, Frank</creator><creator>Meterko, Mark M.</creator><creator>D'Avolio, Leonard W.</creator><general>Springer Publishing Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm</title><author>Brennan, Caitlin W. ; Meng, Frank ; Meterko, Mark M. ; D'Avolio, Leonard W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Administration, Management, and Leadership</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>Natural Language Processing</topic><topic>Nursing</topic><topic>Nursing Education</topic><topic>Nursing Process - standards</topic><topic>Patient Acuity</topic><topic>Pilot Projects</topic><topic>Predictive Value of Tests</topic><topic>Professional Issues and Trends</topic><topic>Reproducibility of Results</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennan, Caitlin W.</creatorcontrib><creatorcontrib>Meng, Frank</creatorcontrib><creatorcontrib>Meterko, Mark M.</creatorcontrib><creatorcontrib>D'Avolio, Leonard W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of nursing measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennan, Caitlin W.</au><au>Meng, Frank</au><au>Meterko, Mark M.</au><au>D'Avolio, Leonard W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm</atitle><jtitle>Journal of nursing measurement</jtitle><addtitle>J Nurs Meas</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>24</volume><issue>3</issue><spage>419</spage><epage>427</epage><pages>419-427</pages><issn>1061-3749</issn><eissn>1945-7049</eissn><abstract>Background and Purpose: One method of determining nurse staffing is to match patient demand for nursing care (patient acuity) with available nursing staff. This pilot study explored the feasibility of automating acuity measurement using a machine learning algorithm. Methods: Natural language processing combined with a machine learning algorithm was used to predict acuity levels based on electronic health record data. Results: The algorithm was able to predict acuity relatively well. A main challenge was discordance among nurse raters of acuity in generating a gold standard of acuity before applying the machine learning algorithm. Conclusions: This pilot study tested applying machine learning techniques to acuity measurement and yielded a moderate level of performance. Higher agreement among the gold standard may yield higher performance in future studies.</abstract><cop>United States</cop><pub>Springer Publishing Company</pub><pmid>28714447</pmid><doi>10.1891/1061-3749.24.3.419</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-3749 |
ispartof | Journal of nursing measurement, 2016-01, Vol.24 (3), p.419-427 |
issn | 1061-3749 1945-7049 |
language | eng |
recordid | cdi_proquest_miscellaneous_1920194124 |
source | Social Science Premium Collection; Sociology Collection |
subjects | Administration, Management, and Leadership Algorithms Artificial Intelligence Electronic Health Records Humans Natural Language Processing Nursing Nursing Education Nursing Process - standards Patient Acuity Pilot Projects Predictive Value of Tests Professional Issues and Trends Reproducibility of Results Workload |
title | Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20Automating%20Patient%20Acuity%20Measurement%20Using%20a%20Machine%20Learning%20Algorithm&rft.jtitle=Journal%20of%20nursing%20measurement&rft.au=Brennan,%20Caitlin%20W.&rft.date=2016-01-01&rft.volume=24&rft.issue=3&rft.spage=419&rft.epage=427&rft.pages=419-427&rft.issn=1061-3749&rft.eissn=1945-7049&rft_id=info:doi/10.1891/1061-3749.24.3.419&rft_dat=%3Cproquest_cross%3E1920194124%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-f2420c1ac6f30248d78be25cc9bb87c74c686999b8816420ccb1989ebcbb7f083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920194124&rft_id=info:pmid/28714447&rfr_iscdi=true |