Loading…

Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces

We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated “on-the-fly”. The method of Gaussian process regression (GPR...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2017-09, Vol.13 (9), p.4012-4024
Main Authors: Richings, Gareth W, Habershon, Scott
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a472t-cf4953f85ec4904a8666b4c522d38b2d11413ae937593e97bc2af7d5402498fa3
cites cdi_FETCH-LOGICAL-a472t-cf4953f85ec4904a8666b4c522d38b2d11413ae937593e97bc2af7d5402498fa3
container_end_page 4024
container_issue 9
container_start_page 4012
container_title Journal of chemical theory and computation
container_volume 13
creator Richings, Gareth W
Habershon, Scott
description We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated “on-the-fly”. The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree–Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.
doi_str_mv 10.1021/acs.jctc.7b00507
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920394734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043258850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-cf4953f85ec4904a8666b4c522d38b2d11413ae937593e97bc2af7d5402498fa3</originalsourceid><addsrcrecordid>eNp1kUtP20AUhUdVqwIp-66qkbphgcM8bc-yvNJKQQUB6nJ0Pb5OJ4rHYcZGyr_HIYFFpa7uXXzn3Mch5CtnU84EPwOXpkvXu2lRMaZZ8YEccq1MZnKRf3zveXlAjlJaMialEvIzORBlwY1g-SFZX_qIrqd3A4R-aOnlJkDrXaKPyYcFnUVfZ-eQsKZ_4Bnp9RBc77tAb2O3hgW89hBqegPurw-YzRFiGOnbrsfQe1jRq4BxsaH3Q2zAYfpCPjWwSni8rxPyeH31cPEzm_-e_br4Mc9AFaLPXKOMlk2p0SnDFJR5nlfKaSFqWVai5lxxCWhkoY1EU1ROQFPUWjGhTNmAnJCTne86dk8Dpt62PjlcrSBgNyS7vV8aVUg1ot__QZfdEMO4nRVMSaHLUrORYjvKxS6liI1dR99C3FjO7DYNO6Zht2nYfRqj5NveeKharN8Fb-8fgdMd8Cp9G_pfvxceU5VV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043258850</pqid></control><display><type>article</type><title>Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Richings, Gareth W ; Habershon, Scott</creator><creatorcontrib>Richings, Gareth W ; Habershon, Scott</creatorcontrib><description>We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated “on-the-fly”. The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree–Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.7b00507</identifier><identifier>PMID: 28719206</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer simulation ; Dynamic structural analysis ; Dynamics ; Electronic structure ; Energy consumption ; Gaussian process ; Mathematical analysis ; Molecular chains ; Potential energy ; Propagation ; Quantum theory ; Regression analysis ; Simulation ; Time dependence ; Wave propagation</subject><ispartof>Journal of chemical theory and computation, 2017-09, Vol.13 (9), p.4012-4024</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 12, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-cf4953f85ec4904a8666b4c522d38b2d11413ae937593e97bc2af7d5402498fa3</citedby><cites>FETCH-LOGICAL-a472t-cf4953f85ec4904a8666b4c522d38b2d11413ae937593e97bc2af7d5402498fa3</cites><orcidid>0000-0001-5932-6011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28719206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richings, Gareth W</creatorcontrib><creatorcontrib>Habershon, Scott</creatorcontrib><title>Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated “on-the-fly”. The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree–Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.</description><subject>Computer simulation</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Electronic structure</subject><subject>Energy consumption</subject><subject>Gaussian process</subject><subject>Mathematical analysis</subject><subject>Molecular chains</subject><subject>Potential energy</subject><subject>Propagation</subject><subject>Quantum theory</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Time dependence</subject><subject>Wave propagation</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kUtP20AUhUdVqwIp-66qkbphgcM8bc-yvNJKQQUB6nJ0Pb5OJ4rHYcZGyr_HIYFFpa7uXXzn3Mch5CtnU84EPwOXpkvXu2lRMaZZ8YEccq1MZnKRf3zveXlAjlJaMialEvIzORBlwY1g-SFZX_qIrqd3A4R-aOnlJkDrXaKPyYcFnUVfZ-eQsKZ_4Bnp9RBc77tAb2O3hgW89hBqegPurw-YzRFiGOnbrsfQe1jRq4BxsaH3Q2zAYfpCPjWwSni8rxPyeH31cPEzm_-e_br4Mc9AFaLPXKOMlk2p0SnDFJR5nlfKaSFqWVai5lxxCWhkoY1EU1ROQFPUWjGhTNmAnJCTne86dk8Dpt62PjlcrSBgNyS7vV8aVUg1ot__QZfdEMO4nRVMSaHLUrORYjvKxS6liI1dR99C3FjO7DYNO6Zht2nYfRqj5NveeKharN8Fb-8fgdMd8Cp9G_pfvxceU5VV</recordid><startdate>20170912</startdate><enddate>20170912</enddate><creator>Richings, Gareth W</creator><creator>Habershon, Scott</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5932-6011</orcidid></search><sort><creationdate>20170912</creationdate><title>Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces</title><author>Richings, Gareth W ; Habershon, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-cf4953f85ec4904a8666b4c522d38b2d11413ae937593e97bc2af7d5402498fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Electronic structure</topic><topic>Energy consumption</topic><topic>Gaussian process</topic><topic>Mathematical analysis</topic><topic>Molecular chains</topic><topic>Potential energy</topic><topic>Propagation</topic><topic>Quantum theory</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Time dependence</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richings, Gareth W</creatorcontrib><creatorcontrib>Habershon, Scott</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richings, Gareth W</au><au>Habershon, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2017-09-12</date><risdate>2017</risdate><volume>13</volume><issue>9</issue><spage>4012</spage><epage>4024</epage><pages>4012-4024</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated “on-the-fly”. The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree–Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28719206</pmid><doi>10.1021/acs.jctc.7b00507</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5932-6011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2017-09, Vol.13 (9), p.4012-4024
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1920394734
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Computer simulation
Dynamic structural analysis
Dynamics
Electronic structure
Energy consumption
Gaussian process
Mathematical analysis
Molecular chains
Potential energy
Propagation
Quantum theory
Regression analysis
Simulation
Time dependence
Wave propagation
title Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Quantum%20Dynamics%20Using%20Grid-Based%20Wave%20Function%20Propagation%20and%20Machine-Learned%20Potential%20Energy%20Surfaces&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Richings,%20Gareth%20W&rft.date=2017-09-12&rft.volume=13&rft.issue=9&rft.spage=4012&rft.epage=4024&rft.pages=4012-4024&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.7b00507&rft_dat=%3Cproquest_cross%3E2043258850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a472t-cf4953f85ec4904a8666b4c522d38b2d11413ae937593e97bc2af7d5402498fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043258850&rft_id=info:pmid/28719206&rfr_iscdi=true