Loading…

Temporal aspects of spatial task performance during intermittent hypoxia in the rat: evidence for neurogenesis

Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea, leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in the adult rat. We report that in Sprague–Dawley rats the initial IH‐induced impairments in spatial learning are fol...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2003-10, Vol.18 (8), p.2335-2342
Main Authors: Gozal, David, Row, Barry W., Gozal, Evelyne, Kheirandish, Leila, Neville, Jennifer J., Brittian, Kenneth R., Sachleben Jr, Leroy R., Guo, Shang Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea, leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in the adult rat. We report that in Sprague–Dawley rats the initial IH‐induced impairments in spatial learning are followed by a partial functional recovery over time, despite continuing IH exposure. These functional changes coincide with initial decreases in basal neurogenesis as shown by the number of positively colabelled cells for BrdU and neurofilament in the dentate gyrus of the hippocampus, and are followed by increased expression of neuronal progenitors and mature neurons (nestin and BrdU‐neurofilament positively labelled cells, respectively). In contrast, no changes occurred during the course of IH exposures in the expression of the synaptic proteins synaptophysin, SNAP25, and drebrin. Collectively, these findings indicate that the occurrence of IH during the lights on period results in a biphasic pattern of neurogenesis in the hippocampus of adult rats, and may account for the observed partial recovery of spatial function.
ISSN:0953-816X
1460-9568
DOI:10.1046/j.1460-9568.2003.02947.x