Loading…

The Efficiency and Specificity of Apurinic/Apyrimidinic Site Bypass by Human DNA Polymerase η and Sulfolobus solfataricus Dpo4

One of the most common DNA lesions arising in cells is an apurinic/apyrimidinic (AP) site resulting from base loss. Although a template strand AP site impedes DNA synthesis, translesion synthesis (TLS) DNA polymerases can bypass an AP site. Because this bypass is expected to be highly mutagenic beca...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2003-12, Vol.278 (50), p.50537-50545
Main Authors: Kokoska, Robert J., McCulloch, Scott D., Kunkel, Thomas A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-c2613d734e9474518ed6e94ec23f5b8bdb7c73bb075e1d4e6754aad25f89b7a73
cites cdi_FETCH-LOGICAL-c411t-c2613d734e9474518ed6e94ec23f5b8bdb7c73bb075e1d4e6754aad25f89b7a73
container_end_page 50545
container_issue 50
container_start_page 50537
container_title The Journal of biological chemistry
container_volume 278
creator Kokoska, Robert J.
McCulloch, Scott D.
Kunkel, Thomas A.
description One of the most common DNA lesions arising in cells is an apurinic/apyrimidinic (AP) site resulting from base loss. Although a template strand AP site impedes DNA synthesis, translesion synthesis (TLS) DNA polymerases can bypass an AP site. Because this bypass is expected to be highly mutagenic because of loss of base coding potential, here we quantify the efficiency and the specificity of AP site bypass by two Y family TLS enzymes, Sulfolobus solfataricus DNA polymerase 4 (Dpo4) and human DNA polymerase η (Pol η). During a single cycle of processive DNA synthesis, Dpo4 and Pol η bypass synthetic AP sites with 13–30 and 10–13%, respectively, of the bypass efficiency for undamaged bases in the same sequence contexts. These efficiencies are higher than for the A family, exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I. We then determined AP site bypass specificity for complete bypass, requiring insertion or misalignment at the AP site followed by multiple incorporations using the aberrant primer templates. Although Dpo4, Pol η, and Klenow polymerase have different fidelity when copying undamaged DNA, bypass of AP sites lacking A or G by all three polymerases is nearly 100% mutagenic. The majority (70–80%) of bypass events made by all three polymerases are insertion of dAMP opposite the AP site. Single base deletion errors comprise 10–25% of bypass events, with other base insertions observed at lower rates. Given that mammalian cells contain five polymerases implicated in TLS, and given that a large number of AP sites are generated per mammalian cell per day, even moderately efficient AP site bypass could be a source of substitution and frameshift mutagenesis in vivo.
doi_str_mv 10.1074/jbc.M308515200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19210484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820755754</els_id><sourcerecordid>19210484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-c2613d734e9474518ed6e94ec23f5b8bdb7c73bb075e1d4e6754aad25f89b7a73</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVpaTZprz0WnXrzRrKklX3cJmlSSD8gCeQm9DGiCrblSnbAp_6s_Iv-pmq7CzlFl9EMz7wwD0IfKFlTIvnpg7Hrb4w0goqakFdoRUnDKibo_Wu0IqSmVVuL5ggd5_xAyuMtfYuOKBc1I5St0J_bX4AvvA82wGAXrAeHb0awYTeZFhw93o5zCkOwp9txSaEPbtfgmzAB_ryMOmdsFnw193rA59-3-Gfslh6SzoD_Pu3z5s7HLpo54xw7ryedgi3N-Rj5O_TG6y7D-0M9QXdfLm7PrqrrH5dfz7bXleWUTpWtN5Q5yTi0XHJBG3Cb8gVbMy9MY5yRVjJjiBRAHYeNFFxrVwvftEZqyU7Qp33umOLvGfKk-pAtdJ0eIM5Z0bamhDe8gOs9aFPMOYFXYzlap0VRonbKVVGunpWXhY-H5Nn04J7xg-MCNHsAyn2PAZLK_2WDCwnspFwML2X_A0TqkSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19210484</pqid></control><display><type>article</type><title>The Efficiency and Specificity of Apurinic/Apyrimidinic Site Bypass by Human DNA Polymerase η and Sulfolobus solfataricus Dpo4</title><source>ScienceDirect Journals</source><creator>Kokoska, Robert J. ; McCulloch, Scott D. ; Kunkel, Thomas A.</creator><creatorcontrib>Kokoska, Robert J. ; McCulloch, Scott D. ; Kunkel, Thomas A.</creatorcontrib><description>One of the most common DNA lesions arising in cells is an apurinic/apyrimidinic (AP) site resulting from base loss. Although a template strand AP site impedes DNA synthesis, translesion synthesis (TLS) DNA polymerases can bypass an AP site. Because this bypass is expected to be highly mutagenic because of loss of base coding potential, here we quantify the efficiency and the specificity of AP site bypass by two Y family TLS enzymes, Sulfolobus solfataricus DNA polymerase 4 (Dpo4) and human DNA polymerase η (Pol η). During a single cycle of processive DNA synthesis, Dpo4 and Pol η bypass synthetic AP sites with 13–30 and 10–13%, respectively, of the bypass efficiency for undamaged bases in the same sequence contexts. These efficiencies are higher than for the A family, exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I. We then determined AP site bypass specificity for complete bypass, requiring insertion or misalignment at the AP site followed by multiple incorporations using the aberrant primer templates. Although Dpo4, Pol η, and Klenow polymerase have different fidelity when copying undamaged DNA, bypass of AP sites lacking A or G by all three polymerases is nearly 100% mutagenic. The majority (70–80%) of bypass events made by all three polymerases are insertion of dAMP opposite the AP site. Single base deletion errors comprise 10–25% of bypass events, with other base insertions observed at lower rates. Given that mammalian cells contain five polymerases implicated in TLS, and given that a large number of AP sites are generated per mammalian cell per day, even moderately efficient AP site bypass could be a source of substitution and frameshift mutagenesis in vivo.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M308515200</identifier><identifier>PMID: 14523013</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>apurinic sites ; apurinic/apyrimidinic sites ; apyrimidinic sites ; Base Sequence ; DNA - metabolism ; DNA Damage ; DNA Replication ; DNA-Directed DNA Polymerase - chemistry ; DNA-Directed DNA Polymerase - metabolism ; Escherichia coli - enzymology ; Escherichia coli - metabolism ; Frameshift Mutation ; Gene Deletion ; Humans ; Microscopy, Fluorescence ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Species Specificity ; Substrate Specificity ; Sulfolobus - metabolism ; Sulfolobus solfataricus</subject><ispartof>The Journal of biological chemistry, 2003-12, Vol.278 (50), p.50537-50545</ispartof><rights>2003 © 2003 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-c2613d734e9474518ed6e94ec23f5b8bdb7c73bb075e1d4e6754aad25f89b7a73</citedby><cites>FETCH-LOGICAL-c411t-c2613d734e9474518ed6e94ec23f5b8bdb7c73bb075e1d4e6754aad25f89b7a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820755754$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14523013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kokoska, Robert J.</creatorcontrib><creatorcontrib>McCulloch, Scott D.</creatorcontrib><creatorcontrib>Kunkel, Thomas A.</creatorcontrib><title>The Efficiency and Specificity of Apurinic/Apyrimidinic Site Bypass by Human DNA Polymerase η and Sulfolobus solfataricus Dpo4</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>One of the most common DNA lesions arising in cells is an apurinic/apyrimidinic (AP) site resulting from base loss. Although a template strand AP site impedes DNA synthesis, translesion synthesis (TLS) DNA polymerases can bypass an AP site. Because this bypass is expected to be highly mutagenic because of loss of base coding potential, here we quantify the efficiency and the specificity of AP site bypass by two Y family TLS enzymes, Sulfolobus solfataricus DNA polymerase 4 (Dpo4) and human DNA polymerase η (Pol η). During a single cycle of processive DNA synthesis, Dpo4 and Pol η bypass synthetic AP sites with 13–30 and 10–13%, respectively, of the bypass efficiency for undamaged bases in the same sequence contexts. These efficiencies are higher than for the A family, exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I. We then determined AP site bypass specificity for complete bypass, requiring insertion or misalignment at the AP site followed by multiple incorporations using the aberrant primer templates. Although Dpo4, Pol η, and Klenow polymerase have different fidelity when copying undamaged DNA, bypass of AP sites lacking A or G by all three polymerases is nearly 100% mutagenic. The majority (70–80%) of bypass events made by all three polymerases are insertion of dAMP opposite the AP site. Single base deletion errors comprise 10–25% of bypass events, with other base insertions observed at lower rates. Given that mammalian cells contain five polymerases implicated in TLS, and given that a large number of AP sites are generated per mammalian cell per day, even moderately efficient AP site bypass could be a source of substitution and frameshift mutagenesis in vivo.</description><subject>apurinic sites</subject><subject>apurinic/apyrimidinic sites</subject><subject>apyrimidinic sites</subject><subject>Base Sequence</subject><subject>DNA - metabolism</subject><subject>DNA Damage</subject><subject>DNA Replication</subject><subject>DNA-Directed DNA Polymerase - chemistry</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - metabolism</subject><subject>Frameshift Mutation</subject><subject>Gene Deletion</subject><subject>Humans</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Species Specificity</subject><subject>Substrate Specificity</subject><subject>Sulfolobus - metabolism</subject><subject>Sulfolobus solfataricus</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kE1r3DAQhkVpaTZprz0WnXrzRrKklX3cJmlSSD8gCeQm9DGiCrblSnbAp_6s_Iv-pmq7CzlFl9EMz7wwD0IfKFlTIvnpg7Hrb4w0goqakFdoRUnDKibo_Wu0IqSmVVuL5ggd5_xAyuMtfYuOKBc1I5St0J_bX4AvvA82wGAXrAeHb0awYTeZFhw93o5zCkOwp9txSaEPbtfgmzAB_ryMOmdsFnw193rA59-3-Gfslh6SzoD_Pu3z5s7HLpo54xw7ryedgi3N-Rj5O_TG6y7D-0M9QXdfLm7PrqrrH5dfz7bXleWUTpWtN5Q5yTi0XHJBG3Cb8gVbMy9MY5yRVjJjiBRAHYeNFFxrVwvftEZqyU7Qp33umOLvGfKk-pAtdJ0eIM5Z0bamhDe8gOs9aFPMOYFXYzlap0VRonbKVVGunpWXhY-H5Nn04J7xg-MCNHsAyn2PAZLK_2WDCwnspFwML2X_A0TqkSs</recordid><startdate>20031212</startdate><enddate>20031212</enddate><creator>Kokoska, Robert J.</creator><creator>McCulloch, Scott D.</creator><creator>Kunkel, Thomas A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope></search><sort><creationdate>20031212</creationdate><title>The Efficiency and Specificity of Apurinic/Apyrimidinic Site Bypass by Human DNA Polymerase η and Sulfolobus solfataricus Dpo4</title><author>Kokoska, Robert J. ; McCulloch, Scott D. ; Kunkel, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-c2613d734e9474518ed6e94ec23f5b8bdb7c73bb075e1d4e6754aad25f89b7a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>apurinic sites</topic><topic>apurinic/apyrimidinic sites</topic><topic>apyrimidinic sites</topic><topic>Base Sequence</topic><topic>DNA - metabolism</topic><topic>DNA Damage</topic><topic>DNA Replication</topic><topic>DNA-Directed DNA Polymerase - chemistry</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - metabolism</topic><topic>Frameshift Mutation</topic><topic>Gene Deletion</topic><topic>Humans</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Species Specificity</topic><topic>Substrate Specificity</topic><topic>Sulfolobus - metabolism</topic><topic>Sulfolobus solfataricus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kokoska, Robert J.</creatorcontrib><creatorcontrib>McCulloch, Scott D.</creatorcontrib><creatorcontrib>Kunkel, Thomas A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokoska, Robert J.</au><au>McCulloch, Scott D.</au><au>Kunkel, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Efficiency and Specificity of Apurinic/Apyrimidinic Site Bypass by Human DNA Polymerase η and Sulfolobus solfataricus Dpo4</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2003-12-12</date><risdate>2003</risdate><volume>278</volume><issue>50</issue><spage>50537</spage><epage>50545</epage><pages>50537-50545</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>One of the most common DNA lesions arising in cells is an apurinic/apyrimidinic (AP) site resulting from base loss. Although a template strand AP site impedes DNA synthesis, translesion synthesis (TLS) DNA polymerases can bypass an AP site. Because this bypass is expected to be highly mutagenic because of loss of base coding potential, here we quantify the efficiency and the specificity of AP site bypass by two Y family TLS enzymes, Sulfolobus solfataricus DNA polymerase 4 (Dpo4) and human DNA polymerase η (Pol η). During a single cycle of processive DNA synthesis, Dpo4 and Pol η bypass synthetic AP sites with 13–30 and 10–13%, respectively, of the bypass efficiency for undamaged bases in the same sequence contexts. These efficiencies are higher than for the A family, exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I. We then determined AP site bypass specificity for complete bypass, requiring insertion or misalignment at the AP site followed by multiple incorporations using the aberrant primer templates. Although Dpo4, Pol η, and Klenow polymerase have different fidelity when copying undamaged DNA, bypass of AP sites lacking A or G by all three polymerases is nearly 100% mutagenic. The majority (70–80%) of bypass events made by all three polymerases are insertion of dAMP opposite the AP site. Single base deletion errors comprise 10–25% of bypass events, with other base insertions observed at lower rates. Given that mammalian cells contain five polymerases implicated in TLS, and given that a large number of AP sites are generated per mammalian cell per day, even moderately efficient AP site bypass could be a source of substitution and frameshift mutagenesis in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14523013</pmid><doi>10.1074/jbc.M308515200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2003-12, Vol.278 (50), p.50537-50545
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_19210484
source ScienceDirect Journals
subjects apurinic sites
apurinic/apyrimidinic sites
apyrimidinic sites
Base Sequence
DNA - metabolism
DNA Damage
DNA Replication
DNA-Directed DNA Polymerase - chemistry
DNA-Directed DNA Polymerase - metabolism
Escherichia coli - enzymology
Escherichia coli - metabolism
Frameshift Mutation
Gene Deletion
Humans
Microscopy, Fluorescence
Models, Genetic
Models, Molecular
Molecular Sequence Data
Mutation
Protein Binding
Protein Structure, Secondary
Species Specificity
Substrate Specificity
Sulfolobus - metabolism
Sulfolobus solfataricus
title The Efficiency and Specificity of Apurinic/Apyrimidinic Site Bypass by Human DNA Polymerase η and Sulfolobus solfataricus Dpo4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Efficiency%20and%20Specificity%20of%20Apurinic/Apyrimidinic%20Site%20Bypass%20by%20Human%20DNA%20Polymerase%20%CE%B7%20and%20Sulfolobus%20solfataricus%20Dpo4&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kokoska,%20Robert%20J.&rft.date=2003-12-12&rft.volume=278&rft.issue=50&rft.spage=50537&rft.epage=50545&rft.pages=50537-50545&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M308515200&rft_dat=%3Cproquest_cross%3E19210484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-c2613d734e9474518ed6e94ec23f5b8bdb7c73bb075e1d4e6754aad25f89b7a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19210484&rft_id=info:pmid/14523013&rfr_iscdi=true