Loading…

Simultaneous multi-analyte determination of estrone, isoproturon and atrazine in natural waters by the RIver ANAlyser (RIANA), an optical immunosensor

In most medical and environmental applications of biosensors, only single analytes are determined. However, the monitoring of several analytes is obviously preferable in order to gather more information about the sample under analysis. In line with this, different technologies are being developed to...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2004-02, Vol.19 (7), p.633-640
Main Authors: Rodriguez-Mozaz, S, Reder, S, Lopez de Alda, M, Gauglitz, G, Barceló, D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In most medical and environmental applications of biosensors, only single analytes are determined. However, the monitoring of several analytes is obviously preferable in order to gather more information about the sample under analysis. In line with this, different technologies are being developed to obtain multi-analyte sensors. In this paper, an analytical method for the simultaneous determination of three different contaminants—atrazine, isoproturon, and estrone—in natural waters by using an optical immunosensor prototype, the so-called “RIver ANAlyser” (RIANA), is described. RIANA is based on a rapid solid-phase fluoroimmunoassay that takes place at an optical transducer chip. The transducer surface is chemically modified with three analytes derivatives placed in different discrete locations. The sensor surface can be regenerated thus allowing the performance of several measurements with the same transducer. Each test cycle, including one regeneration step, is accomplished in 15 min. Detection limits achieved were 0.155, 0.046, and 0.084 μg/l, for atrazine, isoproturon, and estrone, respectively. Satisfactory repetition, with relative standard deviations between 1.06 and 6.98%, was obtained. Excluding a minor non-specifical binding of the isoproturon antibodies, no cross-reactivity effects were observed. Matrix effects were significant only in the case of wastewater samples. Biosensor measurements were validated using conventional liquid chromatography-mass spectrometry. The results obtained with both techniques were in good agreement.
ISSN:0956-5663
1873-4235
DOI:10.1016/S0956-5663(03)00255-0