Loading…

Uhlmann Connection in Fermionic Systems Undergoing Phase Transitions

We study the behavior of the Uhlmann connection in systems of fermions undergoing phase transitions. In particular, we analyze some of the paradigmatic cases of topological insulators and superconductors in one dimension, as well as the BCS theory of superconductivity in three dimensions. We show th...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2017-07, Vol.119 (1), p.015702-015702, Article 015702
Main Authors: Mera, Bruno, Vlachou, Chrysoula, Paunković, Nikola, Vieira, Vítor R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the behavior of the Uhlmann connection in systems of fermions undergoing phase transitions. In particular, we analyze some of the paradigmatic cases of topological insulators and superconductors in one dimension, as well as the BCS theory of superconductivity in three dimensions. We show that the Uhlmann connection signals phase transitions in which the eigenbasis of the state of the system changes. Moreover, using the established fidelity approach and the study of the edge states, we show the absence of thermally driven phase transitions in the case of topological insulators and superconductors. We clarify what is the relevant parameter space associated with the Uhlmann connection so that it signals the existence of order in mixed states. In addition, the study of Majorana modes at finite temperature opens the possibility of applications in realistic stable quantum memories. Finally, the analysis of the different behavior of the BCS model and the Kitaev chain, with respect to the Uhlmann connection, suggested that in realistic scenarios the gap of topological superconductors could also, generically, be temperature dependent.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.119.015702