Loading…

Estradiol Binding to Maxi-K Channels Induces Their Down-regulation via Proteasomal Degradation

Estrogens exert their biological action via both genomic and non-genomic mechanisms. Proteins different from classical estradiol receptors are believed to mediate the latter effects. Here we demonstrate that the maxi-K channel functions as an estrogen-binding protein in transfected HEK293 cells. Who...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-01, Vol.279 (2), p.1217-1223
Main Authors: Korovkina, Victoria P., Brainard, Adam M., Ismail, Plabon, Schmidt, Thomas J., England, Sarah K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Estrogens exert their biological action via both genomic and non-genomic mechanisms. Proteins different from classical estradiol receptors are believed to mediate the latter effects. Here we demonstrate that the maxi-K channel functions as an estrogen-binding protein in transfected HEK293 cells. Whole-cell maxi-K channel currents and protein expression were attenuated by exposure to either 17α- or 17β-estradiol. This effect was dose-dependent for 17β-estradiol at concentrations ranging from 10 nm to 1 μm, while 17α-estradiol inhibited channel expression only at 1 μm. These effects were mediated by direct low affinity binding of estradiol to the maxi-K channel but not to its accessory β1-subunit, as revealed by cell membrane estradiol binding assays. However, specific binding of estradiol to the channel was facilitated by the presence of the β1 subunit. Addition of MG-132, a blocker of proteasomal degradation, stabilized channel expression. These data suggest that channel down-regulation is mediated by estrogen-induced proteasomal degradation, similar to the pathway used for estrogen receptor degradation. Membrane expression of endogenous maxi-K channels in cultured vascular smooth muscle cells was also attenuated by prolonged exposure to 17α- and 17β-estradiol. Thus our studies demonstrate that estrogen binds to maxi-K channels and may directly regulate channel expression and function. These results will have important implications in understanding estradiol-induced effects in multiple tissues including vascular smooth muscle.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M309158200