Loading…

Tumor Necrosis Factor α Modulates Airway Smooth Muscle Function via the Autocrine Action of Interferon β

Current evidence suggests that tumor necrosis factor α (TNFα) and the family of interferons (IFNs) synergistically regulate many cellular responses that are believed to be critical in chronic inflammatory diseases, although the underlying mechanisms of such interaction are complex, cell-specific, an...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2003-12, Vol.278 (50), p.50615-50623
Main Authors: Tliba, Omar, Tliba, Samira, Da Huang, Chien, Hoffman, Rebecca K., DeLong, Peter, Panettieri, Reynold A., Amrani, Yassine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current evidence suggests that tumor necrosis factor α (TNFα) and the family of interferons (IFNs) synergistically regulate many cellular responses that are believed to be critical in chronic inflammatory diseases, although the underlying mechanisms of such interaction are complex, cell-specific, and not completely understood. In this study, TNFα in a time-dependent manner activated both janus tyrosine kinase 1 and Tyk2 tyrosine kinase and increased the nuclear translocation of interferon-regulatory factor-1, STAT1, and STAT2 in human airway smooth muscle cells. In cells transfected with a luciferase reporter, TNFα stimulated γ-activated site-dependent gene transcription in a time- and concentration-dependent manner. Using neutralizing antibodies to IFNβ and TNFα receptor 1, we show that TNFα-induced secretion of IFNβ mediated γ-activated site-dependent gene expression via activation of TNFα receptor 1. In addition, neutralizing antibody to IFNβ also completely abrogated the activation of interferon stimulation response element-dependent gene transcription induced by TNFα. Secreted IFNβ acted as a negative regulator of TNFα-induced interleukin-6 expression, while IFNβ augmented TNFα-induced RANTES (regulated on activation normal T cell expressed and secreted) secretion but had little effect on TNFα-induced intercellular adhesion molecule-1 expression. Furthermore TNFα, a modest airway smooth muscle mitogen, markedly induced DNA synthesis when cells were treated with neutralizing anti-IFNβ. Together these data show that TNFα, via the autocrine action of IFNβ, differentially regulates the expression of proinflammatory genes and DNA synthesis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M303680200