Loading…

Differential and Special Properties of the Major Human UGT1-encoded Gastrointestinal UDP-glucuronosyltransferases Enhance Potential to Control Chemical Uptake

UDP-glucuronosyltransferase (UGT) isozymes detoxify metabolites, drugs, toxins, and environmental chemicals via conjugation to glucuronic acid. Based on the extended UGT1 locus combined with Northern blot analysis and in situ hybridization, we determined the distribution of UGT1A1 and UGT1A7 through...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-01, Vol.279 (2), p.1429-1441
Main Authors: Basu, Nikhil K., Ciotti, Marco, Hwang, Myung S., Kole, Labanyamoy, Mitra, Partha S., Cho, Jeong W., Owens, Ida S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:UDP-glucuronosyltransferase (UGT) isozymes detoxify metabolites, drugs, toxins, and environmental chemicals via conjugation to glucuronic acid. Based on the extended UGT1 locus combined with Northern blot analysis and in situ hybridization, we determined the distribution of UGT1A1 and UGT1A7 through UGT1A10 mRNAs and found them for the first time segmentally distributed in the mucosal epithelia layer of the gastrointestinal tract. Biochemically, recombinant isozymes exhibited pH optima of 5.5, 6.4, 7.6, 8.5, and/or a broad pH range, and activities were found to be unaffected or progressively inhibited by increasing substrate concentrations after attaining Vmax for certain chemicals. Under different optimal conditions, all exhibited wide substrate selections for dietary and environmentally associated chemicals. Evidence also suggests tandem effects of isozymes in the time for completion of reactions when comparing short- and long-term incubations. Moreover, treatment of colon cells with certain diet-associated constituents, curcumin and nordihydroguaiaretic acid, reversibly targets UGTs causing inhibition without affecting protein levels; there is no direct inhibition of control UGT using curcumin as substrate in the in vitro assay. In summary, we demonstrate that UGTs are located in gastrointestinal mucosa, have vast overlapping activities under differential optimal conditions, and exhibit marked sensitivity to certain dietary substrates/constituents, representing a first comprehensive study of critical properties concerning glucuronidating isozymes in alimentary tissues. Additionally, the highly dynamic, complex, and variable properties necessarily impact absorption of ingested chemicals and therapeutic drugs.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M306439200