Loading…

Joint incorporation of randomised and observational evidence in estimating treatment effects

In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and ob...

Full description

Saved in:
Bibliographic Details
Published in:Statistical methods in medical research 2019-01, Vol.28 (1), p.235-247
Main Authors: Ferguson, John, Alvarez-Iglesias, Alberto, Newell, John, Hinde, John, O’ Donnell, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793
cites cdi_FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793
container_end_page 247
container_issue 1
container_start_page 235
container_title Statistical methods in medical research
container_volume 28
creator Ferguson, John
Alvarez-Iglesias, Alberto
Newell, John
Hinde, John
O’ Donnell, Martin
description In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and observational data and investigate its properties by simulation. We show that a substantial gain in estimation accuracy, compared with the estimator based solely on the randomised trial, is possible when the observational evidence has low bias and standard error. In the contrasting scenario where the observational evidence is inaccurate, the estimator automatically discounts its contribution to the estimated treatment effect. Meta-analysis extensions, combining estimators from multiple observational studies and randomised trials, are also explored.
doi_str_mv 10.1177/0962280217720854
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1923745097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280217720854</sage_id><sourcerecordid>1923745097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793</originalsourceid><addsrcrecordid>eNp1UM9LwzAUDqK4Ob17koIXL9WXtE2aowx_MvCiN6Fkycvo6JqZtAP_e1M3FQae3oPvx_veR8g5hWtKhbgByRkrgcWdQVnkB2RMcyFSyLL8kIwHOB3wETkJYQkAAnJ5TEasFHlBMzYm78-ubrukbrXza-dVV7s2cTbxqjVuVQc0SdwSNw_oN9-oahLc1AZbjVGWYOjqVQTaRdJ5VN0Kox1ai7oLp-TIqibg2W5OyNv93ev0MZ29PDxNb2epznjRpVRrMEaWCFwUgkubMaaN4ZADtwWi4JoaZmJkZXkO1mqjFShJ54UpuZDZhFxtfdfeffQxURWTa2wa1aLrQ0Uly6IapIjUyz3q0vU-PhUqRjkt49FiYMGWpb0LwaOt1j5-6T8rCtXQfLXffJRc7Iz7-QrNr-Cn6khIt4SgFvh39V_DLwMqi5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161860457</pqid></control><display><type>article</type><title>Joint incorporation of randomised and observational evidence in estimating treatment effects</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Ferguson, John ; Alvarez-Iglesias, Alberto ; Newell, John ; Hinde, John ; O’ Donnell, Martin</creator><creatorcontrib>Ferguson, John ; Alvarez-Iglesias, Alberto ; Newell, John ; Hinde, John ; O’ Donnell, Martin</creatorcontrib><description>In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and observational data and investigate its properties by simulation. We show that a substantial gain in estimation accuracy, compared with the estimator based solely on the randomised trial, is possible when the observational evidence has low bias and standard error. In the contrasting scenario where the observational evidence is inaccurate, the estimator automatically discounts its contribution to the estimated treatment effect. Meta-analysis extensions, combining estimators from multiple observational studies and randomised trials, are also explored.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280217720854</identifier><identifier>PMID: 28745132</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bias ; Confidence Intervals ; Data Accuracy ; Data Interpretation, Statistical ; Discounts ; Estimation ; Evidence-based medicine ; Humans ; Meta-analysis ; Models, Statistical ; Observational studies ; Observational Studies as Topic ; Probability ; Randomization ; Randomized Controlled Trials as Topic ; Simulation ; Standard error ; Treatment Outcome</subject><ispartof>Statistical methods in medical research, 2019-01, Vol.28 (1), p.235-247</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793</citedby><cites>FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,30976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28745132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferguson, John</creatorcontrib><creatorcontrib>Alvarez-Iglesias, Alberto</creatorcontrib><creatorcontrib>Newell, John</creatorcontrib><creatorcontrib>Hinde, John</creatorcontrib><creatorcontrib>O’ Donnell, Martin</creatorcontrib><title>Joint incorporation of randomised and observational evidence in estimating treatment effects</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and observational data and investigate its properties by simulation. We show that a substantial gain in estimation accuracy, compared with the estimator based solely on the randomised trial, is possible when the observational evidence has low bias and standard error. In the contrasting scenario where the observational evidence is inaccurate, the estimator automatically discounts its contribution to the estimated treatment effect. Meta-analysis extensions, combining estimators from multiple observational studies and randomised trials, are also explored.</description><subject>Bias</subject><subject>Confidence Intervals</subject><subject>Data Accuracy</subject><subject>Data Interpretation, Statistical</subject><subject>Discounts</subject><subject>Estimation</subject><subject>Evidence-based medicine</subject><subject>Humans</subject><subject>Meta-analysis</subject><subject>Models, Statistical</subject><subject>Observational studies</subject><subject>Observational Studies as Topic</subject><subject>Probability</subject><subject>Randomization</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Simulation</subject><subject>Standard error</subject><subject>Treatment Outcome</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1UM9LwzAUDqK4Ob17koIXL9WXtE2aowx_MvCiN6Fkycvo6JqZtAP_e1M3FQae3oPvx_veR8g5hWtKhbgByRkrgcWdQVnkB2RMcyFSyLL8kIwHOB3wETkJYQkAAnJ5TEasFHlBMzYm78-ubrukbrXza-dVV7s2cTbxqjVuVQc0SdwSNw_oN9-oahLc1AZbjVGWYOjqVQTaRdJ5VN0Kox1ai7oLp-TIqibg2W5OyNv93ev0MZ29PDxNb2epznjRpVRrMEaWCFwUgkubMaaN4ZADtwWi4JoaZmJkZXkO1mqjFShJ54UpuZDZhFxtfdfeffQxURWTa2wa1aLrQ0Uly6IapIjUyz3q0vU-PhUqRjkt49FiYMGWpb0LwaOt1j5-6T8rCtXQfLXffJRc7Iz7-QrNr-Cn6khIt4SgFvh39V_DLwMqi5k</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ferguson, John</creator><creator>Alvarez-Iglesias, Alberto</creator><creator>Newell, John</creator><creator>Hinde, John</creator><creator>O’ Donnell, Martin</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201901</creationdate><title>Joint incorporation of randomised and observational evidence in estimating treatment effects</title><author>Ferguson, John ; Alvarez-Iglesias, Alberto ; Newell, John ; Hinde, John ; O’ Donnell, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Confidence Intervals</topic><topic>Data Accuracy</topic><topic>Data Interpretation, Statistical</topic><topic>Discounts</topic><topic>Estimation</topic><topic>Evidence-based medicine</topic><topic>Humans</topic><topic>Meta-analysis</topic><topic>Models, Statistical</topic><topic>Observational studies</topic><topic>Observational Studies as Topic</topic><topic>Probability</topic><topic>Randomization</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Simulation</topic><topic>Standard error</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferguson, John</creatorcontrib><creatorcontrib>Alvarez-Iglesias, Alberto</creatorcontrib><creatorcontrib>Newell, John</creatorcontrib><creatorcontrib>Hinde, John</creatorcontrib><creatorcontrib>O’ Donnell, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferguson, John</au><au>Alvarez-Iglesias, Alberto</au><au>Newell, John</au><au>Hinde, John</au><au>O’ Donnell, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint incorporation of randomised and observational evidence in estimating treatment effects</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2019-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>235</spage><epage>247</epage><pages>235-247</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and observational data and investigate its properties by simulation. We show that a substantial gain in estimation accuracy, compared with the estimator based solely on the randomised trial, is possible when the observational evidence has low bias and standard error. In the contrasting scenario where the observational evidence is inaccurate, the estimator automatically discounts its contribution to the estimated treatment effect. Meta-analysis extensions, combining estimators from multiple observational studies and randomised trials, are also explored.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>28745132</pmid><doi>10.1177/0962280217720854</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2019-01, Vol.28 (1), p.235-247
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_1923745097
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)
subjects Bias
Confidence Intervals
Data Accuracy
Data Interpretation, Statistical
Discounts
Estimation
Evidence-based medicine
Humans
Meta-analysis
Models, Statistical
Observational studies
Observational Studies as Topic
Probability
Randomization
Randomized Controlled Trials as Topic
Simulation
Standard error
Treatment Outcome
title Joint incorporation of randomised and observational evidence in estimating treatment effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20incorporation%20of%20randomised%20and%20observational%20evidence%20in%20estimating%20treatment%20effects&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Ferguson,%20John&rft.date=2019-01&rft.volume=28&rft.issue=1&rft.spage=235&rft.epage=247&rft.pages=235-247&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280217720854&rft_dat=%3Cproquest_cross%3E1923745097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161860457&rft_id=info:pmid/28745132&rft_sage_id=10.1177_0962280217720854&rfr_iscdi=true