Loading…
Joint incorporation of randomised and observational evidence in estimating treatment effects
In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and ob...
Saved in:
Published in: | Statistical methods in medical research 2019-01, Vol.28 (1), p.235-247 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793 |
container_end_page | 247 |
container_issue | 1 |
container_start_page | 235 |
container_title | Statistical methods in medical research |
container_volume | 28 |
creator | Ferguson, John Alvarez-Iglesias, Alberto Newell, John Hinde, John O’ Donnell, Martin |
description | In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and observational data and investigate its properties by simulation. We show that a substantial gain in estimation accuracy, compared with the estimator based solely on the randomised trial, is possible when the observational evidence has low bias and standard error. In the contrasting scenario where the observational evidence is inaccurate, the estimator automatically discounts its contribution to the estimated treatment effect. Meta-analysis extensions, combining estimators from multiple observational studies and randomised trials, are also explored. |
doi_str_mv | 10.1177/0962280217720854 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1923745097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280217720854</sage_id><sourcerecordid>1923745097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793</originalsourceid><addsrcrecordid>eNp1UM9LwzAUDqK4Ob17koIXL9WXtE2aowx_MvCiN6Fkycvo6JqZtAP_e1M3FQae3oPvx_veR8g5hWtKhbgByRkrgcWdQVnkB2RMcyFSyLL8kIwHOB3wETkJYQkAAnJ5TEasFHlBMzYm78-ubrukbrXza-dVV7s2cTbxqjVuVQc0SdwSNw_oN9-oahLc1AZbjVGWYOjqVQTaRdJ5VN0Kox1ai7oLp-TIqibg2W5OyNv93ev0MZ29PDxNb2epznjRpVRrMEaWCFwUgkubMaaN4ZADtwWi4JoaZmJkZXkO1mqjFShJ54UpuZDZhFxtfdfeffQxURWTa2wa1aLrQ0Uly6IapIjUyz3q0vU-PhUqRjkt49FiYMGWpb0LwaOt1j5-6T8rCtXQfLXffJRc7Iz7-QrNr-Cn6khIt4SgFvh39V_DLwMqi5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161860457</pqid></control><display><type>article</type><title>Joint incorporation of randomised and observational evidence in estimating treatment effects</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Ferguson, John ; Alvarez-Iglesias, Alberto ; Newell, John ; Hinde, John ; O’ Donnell, Martin</creator><creatorcontrib>Ferguson, John ; Alvarez-Iglesias, Alberto ; Newell, John ; Hinde, John ; O’ Donnell, Martin</creatorcontrib><description>In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and observational data and investigate its properties by simulation. We show that a substantial gain in estimation accuracy, compared with the estimator based solely on the randomised trial, is possible when the observational evidence has low bias and standard error. In the contrasting scenario where the observational evidence is inaccurate, the estimator automatically discounts its contribution to the estimated treatment effect. Meta-analysis extensions, combining estimators from multiple observational studies and randomised trials, are also explored.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280217720854</identifier><identifier>PMID: 28745132</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bias ; Confidence Intervals ; Data Accuracy ; Data Interpretation, Statistical ; Discounts ; Estimation ; Evidence-based medicine ; Humans ; Meta-analysis ; Models, Statistical ; Observational studies ; Observational Studies as Topic ; Probability ; Randomization ; Randomized Controlled Trials as Topic ; Simulation ; Standard error ; Treatment Outcome</subject><ispartof>Statistical methods in medical research, 2019-01, Vol.28 (1), p.235-247</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793</citedby><cites>FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,30976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28745132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferguson, John</creatorcontrib><creatorcontrib>Alvarez-Iglesias, Alberto</creatorcontrib><creatorcontrib>Newell, John</creatorcontrib><creatorcontrib>Hinde, John</creatorcontrib><creatorcontrib>O’ Donnell, Martin</creatorcontrib><title>Joint incorporation of randomised and observational evidence in estimating treatment effects</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and observational data and investigate its properties by simulation. We show that a substantial gain in estimation accuracy, compared with the estimator based solely on the randomised trial, is possible when the observational evidence has low bias and standard error. In the contrasting scenario where the observational evidence is inaccurate, the estimator automatically discounts its contribution to the estimated treatment effect. Meta-analysis extensions, combining estimators from multiple observational studies and randomised trials, are also explored.</description><subject>Bias</subject><subject>Confidence Intervals</subject><subject>Data Accuracy</subject><subject>Data Interpretation, Statistical</subject><subject>Discounts</subject><subject>Estimation</subject><subject>Evidence-based medicine</subject><subject>Humans</subject><subject>Meta-analysis</subject><subject>Models, Statistical</subject><subject>Observational studies</subject><subject>Observational Studies as Topic</subject><subject>Probability</subject><subject>Randomization</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Simulation</subject><subject>Standard error</subject><subject>Treatment Outcome</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1UM9LwzAUDqK4Ob17koIXL9WXtE2aowx_MvCiN6Fkycvo6JqZtAP_e1M3FQae3oPvx_veR8g5hWtKhbgByRkrgcWdQVnkB2RMcyFSyLL8kIwHOB3wETkJYQkAAnJ5TEasFHlBMzYm78-ubrukbrXza-dVV7s2cTbxqjVuVQc0SdwSNw_oN9-oahLc1AZbjVGWYOjqVQTaRdJ5VN0Kox1ai7oLp-TIqibg2W5OyNv93ev0MZ29PDxNb2epznjRpVRrMEaWCFwUgkubMaaN4ZADtwWi4JoaZmJkZXkO1mqjFShJ54UpuZDZhFxtfdfeffQxURWTa2wa1aLrQ0Uly6IapIjUyz3q0vU-PhUqRjkt49FiYMGWpb0LwaOt1j5-6T8rCtXQfLXffJRc7Iz7-QrNr-Cn6khIt4SgFvh39V_DLwMqi5k</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ferguson, John</creator><creator>Alvarez-Iglesias, Alberto</creator><creator>Newell, John</creator><creator>Hinde, John</creator><creator>O’ Donnell, Martin</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201901</creationdate><title>Joint incorporation of randomised and observational evidence in estimating treatment effects</title><author>Ferguson, John ; Alvarez-Iglesias, Alberto ; Newell, John ; Hinde, John ; O’ Donnell, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Confidence Intervals</topic><topic>Data Accuracy</topic><topic>Data Interpretation, Statistical</topic><topic>Discounts</topic><topic>Estimation</topic><topic>Evidence-based medicine</topic><topic>Humans</topic><topic>Meta-analysis</topic><topic>Models, Statistical</topic><topic>Observational studies</topic><topic>Observational Studies as Topic</topic><topic>Probability</topic><topic>Randomization</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Simulation</topic><topic>Standard error</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferguson, John</creatorcontrib><creatorcontrib>Alvarez-Iglesias, Alberto</creatorcontrib><creatorcontrib>Newell, John</creatorcontrib><creatorcontrib>Hinde, John</creatorcontrib><creatorcontrib>O’ Donnell, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferguson, John</au><au>Alvarez-Iglesias, Alberto</au><au>Newell, John</au><au>Hinde, John</au><au>O’ Donnell, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint incorporation of randomised and observational evidence in estimating treatment effects</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2019-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>235</spage><epage>247</epage><pages>235-247</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>In evidence-based medicine, randomised trials are regarded as a gold standard in estimating relative treatment effects. Nevertheless, a potential gain in precision is forfeited by ignoring observational evidence. We describe a simple estimator that combines treatment estimates from randomised and observational data and investigate its properties by simulation. We show that a substantial gain in estimation accuracy, compared with the estimator based solely on the randomised trial, is possible when the observational evidence has low bias and standard error. In the contrasting scenario where the observational evidence is inaccurate, the estimator automatically discounts its contribution to the estimated treatment effect. Meta-analysis extensions, combining estimators from multiple observational studies and randomised trials, are also explored.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>28745132</pmid><doi>10.1177/0962280217720854</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2019-01, Vol.28 (1), p.235-247 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_1923745097 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list) |
subjects | Bias Confidence Intervals Data Accuracy Data Interpretation, Statistical Discounts Estimation Evidence-based medicine Humans Meta-analysis Models, Statistical Observational studies Observational Studies as Topic Probability Randomization Randomized Controlled Trials as Topic Simulation Standard error Treatment Outcome |
title | Joint incorporation of randomised and observational evidence in estimating treatment effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20incorporation%20of%20randomised%20and%20observational%20evidence%20in%20estimating%20treatment%20effects&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Ferguson,%20John&rft.date=2019-01&rft.volume=28&rft.issue=1&rft.spage=235&rft.epage=247&rft.pages=235-247&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280217720854&rft_dat=%3Cproquest_cross%3E1923745097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-1cc0dd98e0675769f322cdd60406f5ee76c1d2d745af640ffcdca0a91b5d86793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161860457&rft_id=info:pmid/28745132&rft_sage_id=10.1177_0962280217720854&rfr_iscdi=true |