Loading…

The NLRP3 Inflammasome: An Important Driver of Neuroinflammation in Hemorrhagic Stroke

Hemorrhagic stroke is a devastating clinical event with no effective medical treatment. Neuroinflammation, which follows a hemorrhagic stroke, is an important element that involves both acute brain injury and subsequent brain rehabilitation. Therefore, delineating the key inflammatory mediators and...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular neurobiology 2018-04, Vol.38 (3), p.595-603
Main Authors: Yang, Shao-Jun, Shao, Gao-Feng, Chen, Jiang-Li, Gong, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hemorrhagic stroke is a devastating clinical event with no effective medical treatment. Neuroinflammation, which follows a hemorrhagic stroke, is an important element that involves both acute brain injury and subsequent brain rehabilitation. Therefore, delineating the key inflammatory mediators and deciphering their pathophysiological roles in hemorrhagic strokes is of great importance in the development of novel therapeutic targets for this disease. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multi-protein complex that is localized within the cytoplasm. This NOD-like receptor orchestrates innate immune responses to pathogenic organisms and cell stress through the activation of caspase-1 and the maturation of the proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18. Mounting evidence has demonstrated that when the NLRP3 inflammasome is activated, it exerts harmful effects on brain tissue after a hemorrhagic stroke. This review article summarizes the current knowledge regarding the role and the underlying mechanisms of the NLRP3 inflammasome in the pathophysiological processes of hemorrhagic strokes. A better understanding of the function and regulation of the NLRP3 inflammasome in hemorrhagic strokes will provide clues for devising novel therapeutic strategies to fight this disease.
ISSN:0272-4340
1573-6830
1573-6830
DOI:10.1007/s10571-017-0526-9