Loading…
3-Iodothyronamine reduces insulin secretion in vitro via a mitochondrial mechanism
3-iodothyronamine (3-T1AM), a decarboxylated and deiodinated thyroid hormone metabolite, leads at pharmacological doses to hypoinsulinemia, hyperglucagonemia and hyperglycemia in vivo. As the pancreatic Langerhans islets express thyroid hormone transmembrane transporters (THTT), we tested the hypoth...
Saved in:
Published in: | Molecular and cellular endocrinology 2018-01, Vol.460, p.219-228 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3-iodothyronamine (3-T1AM), a decarboxylated and deiodinated thyroid hormone metabolite, leads at pharmacological doses to hypoinsulinemia, hyperglucagonemia and hyperglycemia in vivo. As the pancreatic Langerhans islets express thyroid hormone transmembrane transporters (THTT), we tested the hypothesis that not only plasma membrane-mediated 3-T1AM binding to and activation of G-protein coupled receptors, but also 3-T1AM metabolite(s) generated by 3-T1AM uptake and metabolism might decrease glucose-stimulated insulin secretion (GSIS).
Murine pancreatic β-cells MIN6 were characterized for gene expression of THTT, deiodinases and monoamine oxidases. 3-T1AM uptake and intracellular metabolism to the corresponding 3-iodothyroacetic acid were analysed by liquid-chromatography tandem mass spectrometry (LC-MS/MS) at different time points in cells as well as the conditioned medium. Mitochondrial activity, especially ATP-production, was monitored real-time after 3-T1AM application using Seahorse Bioanalyzer technique. Effect of 3-T1AM on GSIS into the culture medium was assayed by ELISA.
MIN6 cells express classical THTT, proposed to transport 3-T1AM, as well as 3-T1AM metabolizing enzymes comparable to murine primary pancreatic islets. 3-T1AM accumulates in MIN6 cells and is metabolized by intracellular MaoB to 3-iodothyroacetic, which in turn is rapidly exported. 3-T1AM decreases mitochondrial ATP-production concentration dependently. GSIS is diminished by 3-T1AM treatment. Using LC-MS/MS, no further 3-T1AM metabolites except 3-iodothyroacetic were detectable.
This data provides a first link between cellular 3-T1AM uptake and regulation of mitochondrial energy metabolism in ß-cells, resulting in reduced insulin secretion. We conclude that MIN6 is an appropriate cell model to study 3-T1AM-dependent (intra-)cellular biochemical mechanisms affecting insulin production in vitro.
•3-T1AM influences glucoregulatory processes in vivo and in vitro.•3-T1AM decreases GSIS due to a mitochondrial mechanism.•Min6 cells transport and metabolize 3-T1AM.•Pancreatic MIN6 cells were used as suitable in vitro β-cell model. |
---|---|
ISSN: | 0303-7207 1872-8057 |
DOI: | 10.1016/j.mce.2017.07.026 |