Loading…

Highly Enantioselective Production of Chiral Secondary Alcohols with Candida zeylanoides as a New Whole Cell Biocatalyst

The increasing demand for biocatalysts in synthesizing enantiomerically pure chiral alcohols results from the outstanding characteristics of biocatalysts in reaction, economic, and ecological issues. Herein, fifteen yeast strains belonging to three food originated yeast species Candida zeylanoides,...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry & biodiversity 2017-09, Vol.14 (9), p.n/a
Main Authors: Şahin, Engin, Dertli, Enes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The increasing demand for biocatalysts in synthesizing enantiomerically pure chiral alcohols results from the outstanding characteristics of biocatalysts in reaction, economic, and ecological issues. Herein, fifteen yeast strains belonging to three food originated yeast species Candida zeylanoides, Pichia fermentans, and Saccharomyces uvarum were tested for their capability for asymmetric reduction of acetophenone to 1‐phenylethanol as biocatalysts. Of these strains, C. zeylanoides P1 showed an effective asymmetric reduction ability. Under optimized conditions, substituted acetophenones were converted to corresponding optically active secondary alcohols in up to 99% enantiomeric excess and at high yields. The preparative scale asymmetric bioreduction of 4‐nitroacetophenone (1m) by C. zeylanoides P1 gave (S)‐1‐(4‐nitrophenyl)ethanol (2m) with 89% yield and > 99% enantiomeric excess. Compound 2m has been obtained in an enantiomerically pure and inexpensive form. Additionally, these results indicate that C. zeylanoides P1 is a promising biocatalyst for the synthesis of chiral alcohols in industry.
ISSN:1612-1872
1612-1880
DOI:10.1002/cbdv.201700121