Loading…

Technical note: Characterization of ceramide in bovine lipoproteins

The hepatic synthesis and export of ceramide is enhanced in diabetic monogastrics. Moreover, ceramide in lipoproteins can mediate the development of insulin resistance. We have previously demonstrated that circulating ceramide increases during the progression of insulin resistance in postpartum dair...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2017-10, Vol.100 (10), p.8602-8608
Main Authors: Phipps, Z.C., Seck, F., Davis, A.N., Rico, J.E., McFadden, J.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hepatic synthesis and export of ceramide is enhanced in diabetic monogastrics. Moreover, ceramide in lipoproteins can mediate the development of insulin resistance. We have previously demonstrated that circulating ceramide increases during the progression of insulin resistance in postpartum dairy cows. Considering that the origins of circulating ceramide required investigation, our objective was to develop a method to characterize the ceramide profile of lipoprotein fractions collected from dairy cows. Serum was collected from 4 nonpregnant and nonlactating Holstein dairy cows. Serum lipoproteins were isolated using size exclusion chromatography by fast protein liquid chromatography (SEC-FPLC). Measurement of triacylglycerol (TAG), phospholipid, total cholesterol, and protein was performed using standard colorimetry practices. Following lipid extraction, fractions were analyzed using electrospray ionization tandem mass spectrometry. Data were analyzed as repeated measures using a mixed model. Lipoprotein isolation using SEC-FPLC and subsequent colorimetric analyses confirmed the presence of 4 distinct fractions: TAG-rich, low density (LDL), and large (buoyant) and small (dense) high density lipoprotein (HDL) subclasses. As expected, the fraction representing mixed very low density lipoproteins and chylomicrons primarily contained TAG. Low density lipoprotein fractions were equally enriched with cholesterol and phospholipid. Buoyant HDL contained elevated levels of cholesterol, phospholipid, and protein. In contrast, the fraction containing dense HDL primarily contained protein. Our method revealed that LDL are enriched with ceramides. Ceramides were also compartmentalized to a lesser extent within both HDL subclasses and TAG-rich lipoproteins. Comparable to whole serum, C16:0-ceramide was the predominant ceramide quantified in all lipoprotein subclasses. Interestingly, the proportion of C24:0-ceramide to total ceramide was elevated in TAG-rich lipoproteins, relative to all other lipoprotein subclasses. We conclude that SEC-FPLC coupled with mass spectrometry is a means to quantify ceramides in lipoprotein fractions. Moreover, ceramides are enriched within bovine LDL, and lipoprotein ceramide profiles reflect levels observed in whole serum. Future investigation will need to determine the biological importance of lipoprotein ceramides with distinct C-chains at amide residues.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2016-12538