Loading…

Polyionic complexes of butyrylcholinesterase and poly-l-lysine-g-poly(ethylene glycol): Comparative kinetics of catalysis and inhibition and in vitro inactivation by proteases and heat

We previously reported that recombinant human butyrylcholinesterase (rhBChE) complexed with a series of copolymers of poly-l-lysine (PLL) with grafted (polyethylene) glycol (PEG) (i.e., PLL-g-PEG) showed reduced catalytic activity but relatively similar concentration-dependent inactivation of the or...

Full description

Saved in:
Bibliographic Details
Published in:Chemico-biological interactions 2017-09, Vol.275, p.86-94
Main Authors: Hester, Kirstin, Liu, Jing, Flynn, Nicholas, Sultatos, Lester G., Geng, Liyi, Brimijoin, Stephen, Ramsey, Joshua D., Hartson, Steven, Ranjan, Ashish, Pope, Carey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We previously reported that recombinant human butyrylcholinesterase (rhBChE) complexed with a series of copolymers of poly-l-lysine (PLL) with grafted (polyethylene) glycol (PEG) (i.e., PLL-g-PEG) showed reduced catalytic activity but relatively similar concentration-dependent inactivation of the organophosphorus inhibitor paraoxon. Herein, we compared the kinetics of catalysis (using butyrylthiocholine as the substrate) and inhibition (using four different inhibitors) of free and copolymer-complexed rhBChE. Using scanning electron microscopy, polyionic complexes of rhBChE with three different PLL-g-PEG copolymers (based on PLL size) appeared as spheroid-shaped particles with relatively similar particle sizes (median diameter = 35 nm). Relatively similar particle sizes were also noted using dynamic light scattering (mean = 26–35 nm). The three copolymer-complexed enzymes exhibited reduced kcat (30–33% reduction), but no significant changes in Km. Inhibitory potency (as reflected by the bimolecular rate constant, ki) was similar among the free and copolymer-complexed enzymes when paraoxon was the inhibitor, whereas statistically significant reductions in ki (16–60%) were noted with the other inhibitors. Sensitivity to inactivation by proteases and heat was also compared. Copolymer-complexed enzymes showed lesser time-dependent inactivation by the proteases trypsin and pronase and by heat compared to the free enzyme. Understanding the unique properties of PLL-g-PEG-BChE complexes may lead to enhanced approaches for use of BChE and other protein bioscavengers. •Copolymer-complexed rhBChE exhibited reduced kcat but no change in Km.•Inhibitor kinetics with polyionic complexes were altered in a chemical-specific manner.•Polyionic complexes were partially protected from inactivation by trypsin and pronase.•Polyionic complexes were resistant to inactivation by heat.
ISSN:0009-2797
1872-7786
DOI:10.1016/j.cbi.2017.07.019