Loading…
Differential Effects of Parkinson's Disease-associated Mutations on Stability and Folding of DJ-1
Mutations in the PARK7/DJ-1 gene cause autosomal-recessive Parkinson's disease. In some patients the gene is deleted. The molecular basis of disease in patients with point mutations is less obvious. We have investigated the molecular properties of [L166P]DJ-1 and the novel variant [E64D]DJ-1. W...
Saved in:
Published in: | The Journal of biological chemistry 2004-02, Vol.279 (8), p.6943-6951 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mutations in the PARK7/DJ-1 gene cause autosomal-recessive Parkinson's disease. In some patients the gene is deleted. The molecular basis of disease in patients with point mutations is less obvious. We have investigated the molecular properties of [L166P]DJ-1 and the novel variant [E64D]DJ-1. When transfected into non-neuronal and neuronal cell lines, steady-state expression levels of [L166P]DJ-1 were dramatically lower than wild-type [WT]DJ-1 and [E64D]DJ-1. Cycloheximide and pulse-chase experiments revealed that the decreased expression levels of [L166P]DJ-1 were because of accelerated protein turnover. Proteasomal degradation was not the major pathway of DJ-1 breakdown because treatment with the proteasome inhibitor MG-132 caused only minimal accumulation of DJ-1, even of the very unstable [L166P]DJ-1 mutant. Because of the structural resemblance of DJ-1 with bacterial cysteine proteases, we considered an autoproteolytic mechanism. However, neither pharmacological inhibition nor site-directed mutagenesis of the putative active site residue Cys-106 stabilized DJ-1. To gain further insight into the structural defects of DJ-1 mutants, human [WT]DJ-1 and both mutants were expressed in Escherichia coli. As in eukaryotic cells, expression levels of [L166P]DJ-1 were dramatically reduced compared with [WT]DJ-1 and [E64D]DJ-1. Circular dichroism spectrometry revealed that the solution structures of [WT]DJ-1 and [E64D]DJ-1 are rich in β-strand and α-helix conformation. α-Helices were more susceptible to thermal denaturation than the β-sheet, and [WT]DJ-1 was more flexible in this regard than [E64D]DJ-1. Thus, structural defects of [E64D]DJ-1 only become apparent upon denaturing conditions, whereas the L166P mutation causes a drastic defect that leads to excessive degradation. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M309204200 |