Loading…
Optimization and characterization of highly nonlinear fiber for broadband optical time lens applications
We demonstrate simple and intuitive methods, for dispersion optimization and characterization of highly nonlinear fiber (HNLF) for use in four-wave-mixing (FWM) based time lens applications. A composite dispersion-flattened HNLF is optimized for high bandwidth time lens processing, by segmentation t...
Saved in:
Published in: | Optics express 2017-05, Vol.25 (11), p.12566-12580 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate simple and intuitive methods, for dispersion optimization and characterization of highly nonlinear fiber (HNLF) for use in four-wave-mixing (FWM) based time lens applications. A composite dispersion-flattened HNLF is optimized for high bandwidth time lens processing, by segmentation to mitigate FWM impairments due to dispersion fluctuations. The fiber is used for FWM conversion of 32 WDM-channels with 50 GHz spacing in a time lens, with -4.6 dB total efficiency, and |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.25.012566 |