Loading…

Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands

DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to devel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling 2017-09, Vol.23 (9), p.256-11, Article 256
Main Authors: Shen, Zhanhang, Mulholland, Kelly A., Zheng, Yujun, Wu, Chun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-8ddfa092320f1fca3b6f48c7dba0576d430ae9a62b4f3c26e2e812f0332d9cef3
cites cdi_FETCH-LOGICAL-c372t-8ddfa092320f1fca3b6f48c7dba0576d430ae9a62b4f3c26e2e812f0332d9cef3
container_end_page 11
container_issue 9
container_start_page 256
container_title Journal of molecular modeling
container_volume 23
creator Shen, Zhanhang
Mulholland, Kelly A.
Zheng, Yujun
Wu, Chun
description DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations
doi_str_mv 10.1007/s00894-017-3417-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927307985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927307985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8ddfa092320f1fca3b6f48c7dba0576d430ae9a62b4f3c26e2e812f0332d9cef3</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEoqPSB2CDjsSGTcCXXGx2pbQDUgWbYR05vkSufJnaScU8Ky-DpxkQIOGFbdnf_5-j81fVS4zeYoT6dxkhxpsa4b6mTdm6J9UG8YbVLSL0abXBHUY14Q06qy5yvkMIYdJ2LSHPqzPCetYyTjfVjw82KBsmiAZEmK0UQeoEKi0TKLGE6A_SBpgjCNhty9rBtr5fRAH2Tn-Hj18uYZ_iqBWMBxDO1WKOHnx0Wi5OFKdDEN7KDNn68jDbGPJ7EErZ41U42C9Jw5RifNAwnprxUenSjgLr96709KiCGEDpbKewIkWWdSkz26L8qylnpyLOL6pnRrisL07nefXt5np39am-_br9fHV5W0vak7lmShmBOKEEGWykoGNnGiZ7NQrU9p1qKBKai46MjaGSdJpoholBlBLFpTb0vHqz-pZB3C86z4O3WWrnRNBxyQPmpKeo56wt6Ot_0Lu4pDKGR6rjjJbUCoVXSqaYc9Jm2CfrRToMGA3H8Ic1_KGEPxzDH7qieXVyXkav1W_Fr6gLQFYgl68w6fRH6f-6_gRhJ76a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926983610</pqid></control><display><type>article</type><title>Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands</title><source>Springer Nature</source><creator>Shen, Zhanhang ; Mulholland, Kelly A. ; Zheng, Yujun ; Wu, Chun</creator><creatorcontrib>Shen, Zhanhang ; Mulholland, Kelly A. ; Zheng, Yujun ; Wu, Chun</creatorcontrib><description>DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-017-3417-6</identifier><identifier>PMID: 28785893</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binding ; Cancer ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Crystal structure ; Deoxyribonucleic acid ; DNA ; Doxorubicin ; Drugs ; Ligands ; Molecular dynamics ; Molecular Medicine ; Original Paper ; Selectivity ; Simulation ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2017-09, Vol.23 (9), p.256-11, Article 256</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8ddfa092320f1fca3b6f48c7dba0576d430ae9a62b4f3c26e2e812f0332d9cef3</citedby><cites>FETCH-LOGICAL-c372t-8ddfa092320f1fca3b6f48c7dba0576d430ae9a62b4f3c26e2e812f0332d9cef3</cites><orcidid>0000-0002-0176-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28785893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Zhanhang</creatorcontrib><creatorcontrib>Mulholland, Kelly A.</creatorcontrib><creatorcontrib>Zheng, Yujun</creatorcontrib><creatorcontrib>Wu, Chun</creatorcontrib><title>Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations</description><subject>Binding</subject><subject>Cancer</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Doxorubicin</subject><subject>Drugs</subject><subject>Ligands</subject><subject>Molecular dynamics</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Selectivity</subject><subject>Simulation</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhiMEoqPSB2CDjsSGTcCXXGx2pbQDUgWbYR05vkSufJnaScU8Ky-DpxkQIOGFbdnf_5-j81fVS4zeYoT6dxkhxpsa4b6mTdm6J9UG8YbVLSL0abXBHUY14Q06qy5yvkMIYdJ2LSHPqzPCetYyTjfVjw82KBsmiAZEmK0UQeoEKi0TKLGE6A_SBpgjCNhty9rBtr5fRAH2Tn-Hj18uYZ_iqBWMBxDO1WKOHnx0Wi5OFKdDEN7KDNn68jDbGPJ7EErZ41U42C9Jw5RifNAwnprxUenSjgLr96709KiCGEDpbKewIkWWdSkz26L8qylnpyLOL6pnRrisL07nefXt5np39am-_br9fHV5W0vak7lmShmBOKEEGWykoGNnGiZ7NQrU9p1qKBKai46MjaGSdJpoholBlBLFpTb0vHqz-pZB3C86z4O3WWrnRNBxyQPmpKeo56wt6Ot_0Lu4pDKGR6rjjJbUCoVXSqaYc9Jm2CfrRToMGA3H8Ic1_KGEPxzDH7qieXVyXkav1W_Fr6gLQFYgl68w6fRH6f-6_gRhJ76a</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Shen, Zhanhang</creator><creator>Mulholland, Kelly A.</creator><creator>Zheng, Yujun</creator><creator>Wu, Chun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0176-3873</orcidid></search><sort><creationdate>20170901</creationdate><title>Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands</title><author>Shen, Zhanhang ; Mulholland, Kelly A. ; Zheng, Yujun ; Wu, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8ddfa092320f1fca3b6f48c7dba0576d430ae9a62b4f3c26e2e812f0332d9cef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binding</topic><topic>Cancer</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Doxorubicin</topic><topic>Drugs</topic><topic>Ligands</topic><topic>Molecular dynamics</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Selectivity</topic><topic>Simulation</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Zhanhang</creatorcontrib><creatorcontrib>Mulholland, Kelly A.</creatorcontrib><creatorcontrib>Zheng, Yujun</creatorcontrib><creatorcontrib>Wu, Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Zhanhang</au><au>Mulholland, Kelly A.</au><au>Zheng, Yujun</au><au>Wu, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>23</volume><issue>9</issue><spage>256</spage><epage>11</epage><pages>256-11</pages><artnum>256</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28785893</pmid><doi>10.1007/s00894-017-3417-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0176-3873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2017-09, Vol.23 (9), p.256-11, Article 256
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_1927307985
source Springer Nature
subjects Binding
Cancer
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Crystal structure
Deoxyribonucleic acid
DNA
Doxorubicin
Drugs
Ligands
Molecular dynamics
Molecular Medicine
Original Paper
Selectivity
Simulation
Theoretical and Computational Chemistry
title Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20of%20anticancer%20drug%20daunomycin%20to%20a%20TGGGGT%20G-quadruplex%20DNA%20probed%20by%20all-atom%20molecular%20dynamics%20simulations:%20additional%20pure%20groove%20binding%20mode%20and%20implications%20on%20designing%20more%20selective%20G-quadruplex%20ligands&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Shen,%20Zhanhang&rft.date=2017-09-01&rft.volume=23&rft.issue=9&rft.spage=256&rft.epage=11&rft.pages=256-11&rft.artnum=256&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-017-3417-6&rft_dat=%3Cproquest_cross%3E1927307985%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-8ddfa092320f1fca3b6f48c7dba0576d430ae9a62b4f3c26e2e812f0332d9cef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1926983610&rft_id=info:pmid/28785893&rfr_iscdi=true