Loading…

p53 stability is regulated by diverse deubiquitinating enzymes

The tumor suppressor protein p53 has a variety of roles in responses to various stress signals. In such responses, p53 activates specific transcriptional targets that control cell cycle arrest, DNA repair, angiogenesis, autophagy, metabolism, migration, aging, senescence, and apoptosis. Since p53 ha...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. Reviews on cancer 2017-12, Vol.1868 (2), p.404-411
Main Authors: Kwon, Seul-Ki, Saindane, Madhuri, Baek, Kwang-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tumor suppressor protein p53 has a variety of roles in responses to various stress signals. In such responses, p53 activates specific transcriptional targets that control cell cycle arrest, DNA repair, angiogenesis, autophagy, metabolism, migration, aging, senescence, and apoptosis. Since p53 has been identified as the most frequently altered gene in human cancers, regulation and stabilization of its normal functions are important. Stability of p53 is regulated by the ubiquitin-proteasome pathway (UPP). Furthermore, it is readjusted by deubiquitination via deubiquitinating enzymes (DUBs) that can eliminate ubiquitin from p53. Diverse DUBs directly or indirectly affect the ubiquitination of p53 and, consequently, regulate various cellular processes associated with p53. As maintenance of p53 is regulated by a variety of DUBs, the interaction of DUBs and p53 can affect diseases such as cancer. Currently, DUBs have a central role in our understanding of various cancers, and some have potential in the development of effective therapeutic strategies. This review summarizes the current knowledge of p53 and of the interconnection between p53 and DUBs.
ISSN:0304-419X
1879-2561
DOI:10.1016/j.bbcan.2017.08.001