Loading…
Fabrication and characterization of electrospun laminin-functionalized silk fibroin/poly(ethylene oxide) nanofibrous scaffolds for peripheral nerve regeneration
The peripheral nerve regeneration is still one of the major clinical problems, which has received a great deal of attention. In this study, the electrospun silk fibroin (SF)/poly(ethylene oxide) (PEO) nanofibrous scaffolds were fabricated and functionalized their surfaces with laminin (LN) without c...
Saved in:
Published in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2018-05, Vol.106 (4), p.1595-1604 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The peripheral nerve regeneration is still one of the major clinical problems, which has received a great deal of attention. In this study, the electrospun silk fibroin (SF)/poly(ethylene oxide) (PEO) nanofibrous scaffolds were fabricated and functionalized their surfaces with laminin (LN) without chemical linkers for potential use in the peripheral nerve tissue engineering. The morphology, surface chemistry, thermal behavior and wettability of the scaffolds were examined to evaluate their performance by means of scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and water contact angle (WCA) measurements, respectively. The proliferation and viability of Schwann cells onto the surfaces of SF/PEO nanofibrous scaffolds were investigated using SEM and thiazolyl blue (MTT) assay. The results showed an improvement of SF conformation and surface hydrophilicity of SF/PEO nanofibers after methanol and O
plasma treatments. The immunostaining observation indicated a continuous coating of LN on the scaffolds. Improving the surface hydrophilicity and LN functionalization significantly increased the cell proliferation and this was more prominent after 5 days of culture time. In conclusion, the obtained results revealed that the electrospun LN-functionalized SF/PEO nanofibrous scaffold could be a promising candidate for peripheral nerve tissue regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1595-1604, 2018. |
---|---|
ISSN: | 1552-4973 1552-4981 |
DOI: | 10.1002/jbm.b.33968 |