Loading…

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO3·H2O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2017-09, Vol.9 (35), p.29872-29880
Main Authors: Bi, Zhijie, Li, Xiaomin, Chen, Yongbo, He, Xiaoli, Xu, Xiaoke, Gao, Xiangdong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO3·H2O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The EESD presents excellent electrochromic properties of broad optical modulation (61.7%), ultrafast response speed (1.84/1.95 s), and great coloration efficiency (139.4 cm2 C–1). In particular, remarkable cyclic stability (sustaining 82.5% of its initial optical modulation after 2500 cycles as an electrochromic device, almost fully maintaining its capacitance after 1000 cycles as an energy storage device) is achieved. The EESD is also able to visually detect the energy storage level via reversible and fast color changes. Moreover, the EESD can be combined with commercial solar cells to constitute an intelligent operating system in the architectures, which would realize the adjustment of indoor sunlight and the improvement of physical comfort totally by the rational utilization of solar energy without additional electricity. Besides, a scaled-up EESD (10 × 11 cm2) is further fabricated as a prototype. Such promising EESD shows huge potential in practically serving as electrochromic smart windows and energy storage devices.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b08656