Loading…
Ultrasound Aided Vertebral Level Localization for Lumbar Surgery
Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes o...
Saved in:
Published in: | IEEE transactions on medical imaging 2017-10, Vol.36 (10), p.2138-2147 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3 |
container_end_page | 2147 |
container_issue | 10 |
container_start_page | 2138 |
container_title | IEEE transactions on medical imaging |
container_volume | 36 |
creator | Baka, Nora Leenstra, Sieger van Walsum, Theo |
description | Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes of the vertebrae. The spinous processes are pre-operatively outlined and labeled in a lateral lumbar X-ray of the patient. Then, in the OR the spinous processes are imaged with 2-D sagittal US, and are automatically segmented and registered with the X-ray shapes. After a small number of scanned vertebrae, the system robustly matches the shapes, and propagates the X-ray label to the US images. The main contributions of our work are: we propose a deep convolutional neural network-based bone segmentation algorithm from US imaging that outperforms state of the art methods in both performance and speed. We present a matching strategy that determines the levels of the spinal processes being imaged. And lastly, we evaluate the complete procedure on 19 clinical data sets from two hospitals, and two observers. The final labeling was correct in 92% of the cases, demonstrating the feasibility of US-based surgical entry point detection for spinal surgeries. |
doi_str_mv | 10.1109/TMI.2017.2738612 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1929887835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8007292</ieee_id><sourcerecordid>1929887835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouq7eBUEKXrx0TSbfN0X8WKh4cFe8hTRJpdJuNWkF_fVWdvXgZeYwz_syPAgdETwjBOvzxf18BpjIGUiqBIEtNCGcqxw4e95GEwxS5RgL2EP7Kb1iTBjHehftgVJYC6km6GLZ9NGmblj57LL2wWdPIfahjLbJivARxtk529Rftq-7VVZ1MSuGtrQxexziS4ifB2insk0Kh5s9Rcub68XVXV483M6vLovcUSb7vOKUVsJhWfoSSiuJlpyXYKnzVlknGaHKc1BE-CpIUQnmQWDtrBYMrHN0is7WvW-xex9C6k1bJxeaxq5CNyRDNGilpKJ8RE__oa_dEFfjdwaIZAwkU3qk8JpysUsphsq8xbq18dMQbH7smtGu-bFrNnbHyMmmeCjb4P8CvzpH4HgN1CGEv7PCWIIG-g3cLHzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174427489</pqid></control><display><type>article</type><title>Ultrasound Aided Vertebral Level Localization for Lumbar Surgery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Baka, Nora ; Leenstra, Sieger ; van Walsum, Theo</creator><creatorcontrib>Baka, Nora ; Leenstra, Sieger ; van Walsum, Theo</creatorcontrib><description>Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes of the vertebrae. The spinous processes are pre-operatively outlined and labeled in a lateral lumbar X-ray of the patient. Then, in the OR the spinous processes are imaged with 2-D sagittal US, and are automatically segmented and registered with the X-ray shapes. After a small number of scanned vertebrae, the system robustly matches the shapes, and propagates the X-ray label to the US images. The main contributions of our work are: we propose a deep convolutional neural network-based bone segmentation algorithm from US imaging that outperforms state of the art methods in both performance and speed. We present a matching strategy that determines the levels of the spinal processes being imaged. And lastly, we evaluate the complete procedure on 19 clinical data sets from two hospitals, and two observers. The final labeling was correct in 92% of the cases, demonstrating the feasibility of US-based surgical entry point detection for spinal surgeries.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2017.2738612</identifier><identifier>PMID: 28809678</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Bone imaging ; Bone segmentation ; Bones ; computer aided surgery ; Deep learning ; Feasibility studies ; Hernia ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Localization ; Lumbar Vertebrae - diagnostic imaging ; Lumbar Vertebrae - surgery ; lumbar X-ray ; Machine Learning ; Male ; Middle Aged ; Neural networks ; Shape ; Shape recognition ; spine ; State of the art ; Surgery ; Surgery, Computer-Assisted - methods ; surgical guidance ; Two dimensional displays ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Vertebrae ; X-ray imaging</subject><ispartof>IEEE transactions on medical imaging, 2017-10, Vol.36 (10), p.2138-2147</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3</citedby><cites>FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3</cites><orcidid>0000-0002-4751-4661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8007292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28809678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baka, Nora</creatorcontrib><creatorcontrib>Leenstra, Sieger</creatorcontrib><creatorcontrib>van Walsum, Theo</creatorcontrib><title>Ultrasound Aided Vertebral Level Localization for Lumbar Surgery</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes of the vertebrae. The spinous processes are pre-operatively outlined and labeled in a lateral lumbar X-ray of the patient. Then, in the OR the spinous processes are imaged with 2-D sagittal US, and are automatically segmented and registered with the X-ray shapes. After a small number of scanned vertebrae, the system robustly matches the shapes, and propagates the X-ray label to the US images. The main contributions of our work are: we propose a deep convolutional neural network-based bone segmentation algorithm from US imaging that outperforms state of the art methods in both performance and speed. We present a matching strategy that determines the levels of the spinal processes being imaged. And lastly, we evaluate the complete procedure on 19 clinical data sets from two hospitals, and two observers. The final labeling was correct in 92% of the cases, demonstrating the feasibility of US-based surgical entry point detection for spinal surgeries.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bone imaging</subject><subject>Bone segmentation</subject><subject>Bones</subject><subject>computer aided surgery</subject><subject>Deep learning</subject><subject>Feasibility studies</subject><subject>Hernia</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Lumbar Vertebrae - diagnostic imaging</subject><subject>Lumbar Vertebrae - surgery</subject><subject>lumbar X-ray</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Shape</subject><subject>Shape recognition</subject><subject>spine</subject><subject>State of the art</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>surgical guidance</subject><subject>Two dimensional displays</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Vertebrae</subject><subject>X-ray imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouq7eBUEKXrx0TSbfN0X8WKh4cFe8hTRJpdJuNWkF_fVWdvXgZeYwz_syPAgdETwjBOvzxf18BpjIGUiqBIEtNCGcqxw4e95GEwxS5RgL2EP7Kb1iTBjHehftgVJYC6km6GLZ9NGmblj57LL2wWdPIfahjLbJivARxtk529Rftq-7VVZ1MSuGtrQxexziS4ifB2insk0Kh5s9Rcub68XVXV483M6vLovcUSb7vOKUVsJhWfoSSiuJlpyXYKnzVlknGaHKc1BE-CpIUQnmQWDtrBYMrHN0is7WvW-xex9C6k1bJxeaxq5CNyRDNGilpKJ8RE__oa_dEFfjdwaIZAwkU3qk8JpysUsphsq8xbq18dMQbH7smtGu-bFrNnbHyMmmeCjb4P8CvzpH4HgN1CGEv7PCWIIG-g3cLHzt</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Baka, Nora</creator><creator>Leenstra, Sieger</creator><creator>van Walsum, Theo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4751-4661</orcidid></search><sort><creationdate>20171001</creationdate><title>Ultrasound Aided Vertebral Level Localization for Lumbar Surgery</title><author>Baka, Nora ; Leenstra, Sieger ; van Walsum, Theo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bone imaging</topic><topic>Bone segmentation</topic><topic>Bones</topic><topic>computer aided surgery</topic><topic>Deep learning</topic><topic>Feasibility studies</topic><topic>Hernia</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Lumbar Vertebrae - diagnostic imaging</topic><topic>Lumbar Vertebrae - surgery</topic><topic>lumbar X-ray</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Shape</topic><topic>Shape recognition</topic><topic>spine</topic><topic>State of the art</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>surgical guidance</topic><topic>Two dimensional displays</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Vertebrae</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Baka, Nora</creatorcontrib><creatorcontrib>Leenstra, Sieger</creatorcontrib><creatorcontrib>van Walsum, Theo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baka, Nora</au><au>Leenstra, Sieger</au><au>van Walsum, Theo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound Aided Vertebral Level Localization for Lumbar Surgery</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>36</volume><issue>10</issue><spage>2138</spage><epage>2147</epage><pages>2138-2147</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes of the vertebrae. The spinous processes are pre-operatively outlined and labeled in a lateral lumbar X-ray of the patient. Then, in the OR the spinous processes are imaged with 2-D sagittal US, and are automatically segmented and registered with the X-ray shapes. After a small number of scanned vertebrae, the system robustly matches the shapes, and propagates the X-ray label to the US images. The main contributions of our work are: we propose a deep convolutional neural network-based bone segmentation algorithm from US imaging that outperforms state of the art methods in both performance and speed. We present a matching strategy that determines the levels of the spinal processes being imaged. And lastly, we evaluate the complete procedure on 19 clinical data sets from two hospitals, and two observers. The final labeling was correct in 92% of the cases, demonstrating the feasibility of US-based surgical entry point detection for spinal surgeries.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28809678</pmid><doi>10.1109/TMI.2017.2738612</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4751-4661</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2017-10, Vol.36 (10), p.2138-2147 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_1929887835 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Artificial neural networks Bone imaging Bone segmentation Bones computer aided surgery Deep learning Feasibility studies Hernia Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Localization Lumbar Vertebrae - diagnostic imaging Lumbar Vertebrae - surgery lumbar X-ray Machine Learning Male Middle Aged Neural networks Shape Shape recognition spine State of the art Surgery Surgery, Computer-Assisted - methods surgical guidance Two dimensional displays Ultrasonic imaging Ultrasonography - methods Ultrasound Vertebrae X-ray imaging |
title | Ultrasound Aided Vertebral Level Localization for Lumbar Surgery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20Aided%20Vertebral%20Level%20Localization%20for%20Lumbar%20Surgery&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Baka,%20Nora&rft.date=2017-10-01&rft.volume=36&rft.issue=10&rft.spage=2138&rft.epage=2147&rft.pages=2138-2147&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2017.2738612&rft_dat=%3Cproquest_ieee_%3E1929887835%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174427489&rft_id=info:pmid/28809678&rft_ieee_id=8007292&rfr_iscdi=true |