Loading…

Ultrasound Aided Vertebral Level Localization for Lumbar Surgery

Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2017-10, Vol.36 (10), p.2138-2147
Main Authors: Baka, Nora, Leenstra, Sieger, van Walsum, Theo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3
cites cdi_FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3
container_end_page 2147
container_issue 10
container_start_page 2138
container_title IEEE transactions on medical imaging
container_volume 36
creator Baka, Nora
Leenstra, Sieger
van Walsum, Theo
description Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes of the vertebrae. The spinous processes are pre-operatively outlined and labeled in a lateral lumbar X-ray of the patient. Then, in the OR the spinous processes are imaged with 2-D sagittal US, and are automatically segmented and registered with the X-ray shapes. After a small number of scanned vertebrae, the system robustly matches the shapes, and propagates the X-ray label to the US images. The main contributions of our work are: we propose a deep convolutional neural network-based bone segmentation algorithm from US imaging that outperforms state of the art methods in both performance and speed. We present a matching strategy that determines the levels of the spinal processes being imaged. And lastly, we evaluate the complete procedure on 19 clinical data sets from two hospitals, and two observers. The final labeling was correct in 92% of the cases, demonstrating the feasibility of US-based surgical entry point detection for spinal surgeries.
doi_str_mv 10.1109/TMI.2017.2738612
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1929887835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8007292</ieee_id><sourcerecordid>1929887835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouq7eBUEKXrx0TSbfN0X8WKh4cFe8hTRJpdJuNWkF_fVWdvXgZeYwz_syPAgdETwjBOvzxf18BpjIGUiqBIEtNCGcqxw4e95GEwxS5RgL2EP7Kb1iTBjHehftgVJYC6km6GLZ9NGmblj57LL2wWdPIfahjLbJivARxtk529Rftq-7VVZ1MSuGtrQxexziS4ifB2insk0Kh5s9Rcub68XVXV483M6vLovcUSb7vOKUVsJhWfoSSiuJlpyXYKnzVlknGaHKc1BE-CpIUQnmQWDtrBYMrHN0is7WvW-xex9C6k1bJxeaxq5CNyRDNGilpKJ8RE__oa_dEFfjdwaIZAwkU3qk8JpysUsphsq8xbq18dMQbH7smtGu-bFrNnbHyMmmeCjb4P8CvzpH4HgN1CGEv7PCWIIG-g3cLHzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174427489</pqid></control><display><type>article</type><title>Ultrasound Aided Vertebral Level Localization for Lumbar Surgery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Baka, Nora ; Leenstra, Sieger ; van Walsum, Theo</creator><creatorcontrib>Baka, Nora ; Leenstra, Sieger ; van Walsum, Theo</creatorcontrib><description>Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes of the vertebrae. The spinous processes are pre-operatively outlined and labeled in a lateral lumbar X-ray of the patient. Then, in the OR the spinous processes are imaged with 2-D sagittal US, and are automatically segmented and registered with the X-ray shapes. After a small number of scanned vertebrae, the system robustly matches the shapes, and propagates the X-ray label to the US images. The main contributions of our work are: we propose a deep convolutional neural network-based bone segmentation algorithm from US imaging that outperforms state of the art methods in both performance and speed. We present a matching strategy that determines the levels of the spinal processes being imaged. And lastly, we evaluate the complete procedure on 19 clinical data sets from two hospitals, and two observers. The final labeling was correct in 92% of the cases, demonstrating the feasibility of US-based surgical entry point detection for spinal surgeries.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2017.2738612</identifier><identifier>PMID: 28809678</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Bone imaging ; Bone segmentation ; Bones ; computer aided surgery ; Deep learning ; Feasibility studies ; Hernia ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Localization ; Lumbar Vertebrae - diagnostic imaging ; Lumbar Vertebrae - surgery ; lumbar X-ray ; Machine Learning ; Male ; Middle Aged ; Neural networks ; Shape ; Shape recognition ; spine ; State of the art ; Surgery ; Surgery, Computer-Assisted - methods ; surgical guidance ; Two dimensional displays ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Vertebrae ; X-ray imaging</subject><ispartof>IEEE transactions on medical imaging, 2017-10, Vol.36 (10), p.2138-2147</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3</citedby><cites>FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3</cites><orcidid>0000-0002-4751-4661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8007292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28809678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baka, Nora</creatorcontrib><creatorcontrib>Leenstra, Sieger</creatorcontrib><creatorcontrib>van Walsum, Theo</creatorcontrib><title>Ultrasound Aided Vertebral Level Localization for Lumbar Surgery</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes of the vertebrae. The spinous processes are pre-operatively outlined and labeled in a lateral lumbar X-ray of the patient. Then, in the OR the spinous processes are imaged with 2-D sagittal US, and are automatically segmented and registered with the X-ray shapes. After a small number of scanned vertebrae, the system robustly matches the shapes, and propagates the X-ray label to the US images. The main contributions of our work are: we propose a deep convolutional neural network-based bone segmentation algorithm from US imaging that outperforms state of the art methods in both performance and speed. We present a matching strategy that determines the levels of the spinal processes being imaged. And lastly, we evaluate the complete procedure on 19 clinical data sets from two hospitals, and two observers. The final labeling was correct in 92% of the cases, demonstrating the feasibility of US-based surgical entry point detection for spinal surgeries.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bone imaging</subject><subject>Bone segmentation</subject><subject>Bones</subject><subject>computer aided surgery</subject><subject>Deep learning</subject><subject>Feasibility studies</subject><subject>Hernia</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Lumbar Vertebrae - diagnostic imaging</subject><subject>Lumbar Vertebrae - surgery</subject><subject>lumbar X-ray</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Shape</subject><subject>Shape recognition</subject><subject>spine</subject><subject>State of the art</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>surgical guidance</subject><subject>Two dimensional displays</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Vertebrae</subject><subject>X-ray imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouq7eBUEKXrx0TSbfN0X8WKh4cFe8hTRJpdJuNWkF_fVWdvXgZeYwz_syPAgdETwjBOvzxf18BpjIGUiqBIEtNCGcqxw4e95GEwxS5RgL2EP7Kb1iTBjHehftgVJYC6km6GLZ9NGmblj57LL2wWdPIfahjLbJivARxtk529Rftq-7VVZ1MSuGtrQxexziS4ifB2insk0Kh5s9Rcub68XVXV483M6vLovcUSb7vOKUVsJhWfoSSiuJlpyXYKnzVlknGaHKc1BE-CpIUQnmQWDtrBYMrHN0is7WvW-xex9C6k1bJxeaxq5CNyRDNGilpKJ8RE__oa_dEFfjdwaIZAwkU3qk8JpysUsphsq8xbq18dMQbH7smtGu-bFrNnbHyMmmeCjb4P8CvzpH4HgN1CGEv7PCWIIG-g3cLHzt</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Baka, Nora</creator><creator>Leenstra, Sieger</creator><creator>van Walsum, Theo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4751-4661</orcidid></search><sort><creationdate>20171001</creationdate><title>Ultrasound Aided Vertebral Level Localization for Lumbar Surgery</title><author>Baka, Nora ; Leenstra, Sieger ; van Walsum, Theo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bone imaging</topic><topic>Bone segmentation</topic><topic>Bones</topic><topic>computer aided surgery</topic><topic>Deep learning</topic><topic>Feasibility studies</topic><topic>Hernia</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Lumbar Vertebrae - diagnostic imaging</topic><topic>Lumbar Vertebrae - surgery</topic><topic>lumbar X-ray</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Shape</topic><topic>Shape recognition</topic><topic>spine</topic><topic>State of the art</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>surgical guidance</topic><topic>Two dimensional displays</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Vertebrae</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Baka, Nora</creatorcontrib><creatorcontrib>Leenstra, Sieger</creatorcontrib><creatorcontrib>van Walsum, Theo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baka, Nora</au><au>Leenstra, Sieger</au><au>van Walsum, Theo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound Aided Vertebral Level Localization for Lumbar Surgery</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>36</volume><issue>10</issue><spage>2138</spage><epage>2147</epage><pages>2138-2147</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Localization of the correct vertebral level for surgical entry during lumbar hernia surgery is not straightforward. In this paper, we develop and evaluate a solution using free-hand 2-D ultrasound (US) imaging in the operation room (OR). Our system exploits the difference in spinous process shapes of the vertebrae. The spinous processes are pre-operatively outlined and labeled in a lateral lumbar X-ray of the patient. Then, in the OR the spinous processes are imaged with 2-D sagittal US, and are automatically segmented and registered with the X-ray shapes. After a small number of scanned vertebrae, the system robustly matches the shapes, and propagates the X-ray label to the US images. The main contributions of our work are: we propose a deep convolutional neural network-based bone segmentation algorithm from US imaging that outperforms state of the art methods in both performance and speed. We present a matching strategy that determines the levels of the spinal processes being imaged. And lastly, we evaluate the complete procedure on 19 clinical data sets from two hospitals, and two observers. The final labeling was correct in 92% of the cases, demonstrating the feasibility of US-based surgical entry point detection for spinal surgeries.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28809678</pmid><doi>10.1109/TMI.2017.2738612</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4751-4661</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2017-10, Vol.36 (10), p.2138-2147
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_1929887835
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Artificial neural networks
Bone imaging
Bone segmentation
Bones
computer aided surgery
Deep learning
Feasibility studies
Hernia
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Localization
Lumbar Vertebrae - diagnostic imaging
Lumbar Vertebrae - surgery
lumbar X-ray
Machine Learning
Male
Middle Aged
Neural networks
Shape
Shape recognition
spine
State of the art
Surgery
Surgery, Computer-Assisted - methods
surgical guidance
Two dimensional displays
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Vertebrae
X-ray imaging
title Ultrasound Aided Vertebral Level Localization for Lumbar Surgery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20Aided%20Vertebral%20Level%20Localization%20for%20Lumbar%20Surgery&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Baka,%20Nora&rft.date=2017-10-01&rft.volume=36&rft.issue=10&rft.spage=2138&rft.epage=2147&rft.pages=2138-2147&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2017.2738612&rft_dat=%3Cproquest_ieee_%3E1929887835%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-f533f6c07bdb2ba719755b2a3cda8ac74138d52816dfe76f64d2609ca9642acc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174427489&rft_id=info:pmid/28809678&rft_ieee_id=8007292&rfr_iscdi=true