Loading…

Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1

During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 2017-10, Vol.430 (1), p.142-155
Main Authors: Hübner, Kathleen, Grassme, Kathrin S., Rao, Jyoti, Wenke, Nina K., Zimmer, Cordula L., Korte, Laura, Müller, Katja, Sumanas, Saulius, Greber, Boris, Herzog, Wiebke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3194-b1fd007c1aacc7848075874fd809a1687449a112a9767275f5b8f0e4a313501a3
cites cdi_FETCH-LOGICAL-c3194-b1fd007c1aacc7848075874fd809a1687449a112a9767275f5b8f0e4a313501a3
container_end_page 155
container_issue 1
container_start_page 142
container_title Developmental biology
container_volume 430
creator Hübner, Kathleen
Grassme, Kathrin S.
Rao, Jyoti
Wenke, Nina K.
Zimmer, Cordula L.
Korte, Laura
Müller, Katja
Sumanas, Saulius
Greber, Boris
Herzog, Wiebke
description During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2BAC:Venus-Pest)mu288; Tg(14TCF:loxP-STOP-loxP-dGFP)mu202). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. •Wnt3a promotes angioblast specification at the expense of primitive erythropoiesis.•In zebrafish and hESC culture Wnt mediated progenitor specification occurs via Lef1.•Generation of novel zebrafish Wnt signaling reporter with destabilized fluorophores in vivo.
doi_str_mv 10.1016/j.ydbio.2017.08.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1929898166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160617301240</els_id><sourcerecordid>1929898166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3194-b1fd007c1aacc7848075874fd809a1687449a112a9767275f5b8f0e4a313501a3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EotvCL0BCPnJJmMmnc-CAqpYircSFqtwsrzNZZuWNg51dadU_X4dtOXIay3rmnZlHiA8IOQI2n3f5qd-wzwvANgeVA1SvxAqhq7O6qX69FisALDJsoLkQlzHuAKBUqnwrLgqlEAtUK_H4MM4y8nY0jsetnHzkmY_kTjLQ9uDMTFHS2Pv5Nzk2TlpyTg7pW8aJLA9szcx-lDzKhMhbx2iylxQ5Bb-lkWcfUvK0xC3skY1c04DvxJvBuEjvn-uVuL-9-Xl9l61_fPt-_XWd2RK7Ktvg0AO0Fo2xtlWVgrZWbTX0CjqDTXpWqWJhurZpi7Ye6o0agCpTYlkDmvJKfDrnpnX-HCjOes9xOcSM5A9RY1d0qlPYNAktz6gNPsZAg54C7004aQS9WNc7_de6XqxrUDpZT10fnwccNnvq__W8aE7AlzNA6cwjU9DRMo2Weg5kZ917_u-AJ05TlaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929898166</pqid></control><display><type>article</type><title>Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1</title><source>ScienceDirect Journals</source><creator>Hübner, Kathleen ; Grassme, Kathrin S. ; Rao, Jyoti ; Wenke, Nina K. ; Zimmer, Cordula L. ; Korte, Laura ; Müller, Katja ; Sumanas, Saulius ; Greber, Boris ; Herzog, Wiebke</creator><creatorcontrib>Hübner, Kathleen ; Grassme, Kathrin S. ; Rao, Jyoti ; Wenke, Nina K. ; Zimmer, Cordula L. ; Korte, Laura ; Müller, Katja ; Sumanas, Saulius ; Greber, Boris ; Herzog, Wiebke</creatorcontrib><description>During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2BAC:Venus-Pest)mu288; Tg(14TCF:loxP-STOP-loxP-dGFP)mu202). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. •Wnt3a promotes angioblast specification at the expense of primitive erythropoiesis.•In zebrafish and hESC culture Wnt mediated progenitor specification occurs via Lef1.•Generation of novel zebrafish Wnt signaling reporter with destabilized fluorophores in vivo.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2017.08.004</identifier><identifier>PMID: 28811218</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Genetically Modified ; beta Catenin - metabolism ; Cell Count ; Cell Differentiation ; Cell Line ; Cell Lineage ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Erythrocytes - cytology ; Erythrocytes - metabolism ; Human Embryonic Stem Cells - cytology ; Human Embryonic Stem Cells - metabolism ; Humans ; Mesoderm ; Mesoderm - cytology ; Mesoderm - metabolism ; Models, Biological ; Organogenesis ; Primitive hematopoiesis ; Somites - embryology ; Somites - metabolism ; Transcription Factors - metabolism ; Vasculogenesis ; Wnt reporter ; Wnt Signaling Pathway ; Wnt3A Protein - metabolism ; Zebrafish ; Zebrafish - metabolism ; Zebrafish Proteins - metabolism</subject><ispartof>Developmental biology, 2017-10, Vol.430 (1), p.142-155</ispartof><rights>2017</rights><rights>Copyright © 2017. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3194-b1fd007c1aacc7848075874fd809a1687449a112a9767275f5b8f0e4a313501a3</citedby><cites>FETCH-LOGICAL-c3194-b1fd007c1aacc7848075874fd809a1687449a112a9767275f5b8f0e4a313501a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28811218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hübner, Kathleen</creatorcontrib><creatorcontrib>Grassme, Kathrin S.</creatorcontrib><creatorcontrib>Rao, Jyoti</creatorcontrib><creatorcontrib>Wenke, Nina K.</creatorcontrib><creatorcontrib>Zimmer, Cordula L.</creatorcontrib><creatorcontrib>Korte, Laura</creatorcontrib><creatorcontrib>Müller, Katja</creatorcontrib><creatorcontrib>Sumanas, Saulius</creatorcontrib><creatorcontrib>Greber, Boris</creatorcontrib><creatorcontrib>Herzog, Wiebke</creatorcontrib><title>Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2BAC:Venus-Pest)mu288; Tg(14TCF:loxP-STOP-loxP-dGFP)mu202). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. •Wnt3a promotes angioblast specification at the expense of primitive erythropoiesis.•In zebrafish and hESC culture Wnt mediated progenitor specification occurs via Lef1.•Generation of novel zebrafish Wnt signaling reporter with destabilized fluorophores in vivo.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>beta Catenin - metabolism</subject><subject>Cell Count</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Lineage</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Erythrocytes - cytology</subject><subject>Erythrocytes - metabolism</subject><subject>Human Embryonic Stem Cells - cytology</subject><subject>Human Embryonic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Mesoderm</subject><subject>Mesoderm - cytology</subject><subject>Mesoderm - metabolism</subject><subject>Models, Biological</subject><subject>Organogenesis</subject><subject>Primitive hematopoiesis</subject><subject>Somites - embryology</subject><subject>Somites - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Vasculogenesis</subject><subject>Wnt reporter</subject><subject>Wnt Signaling Pathway</subject><subject>Wnt3A Protein - metabolism</subject><subject>Zebrafish</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EotvCL0BCPnJJmMmnc-CAqpYircSFqtwsrzNZZuWNg51dadU_X4dtOXIay3rmnZlHiA8IOQI2n3f5qd-wzwvANgeVA1SvxAqhq7O6qX69FisALDJsoLkQlzHuAKBUqnwrLgqlEAtUK_H4MM4y8nY0jsetnHzkmY_kTjLQ9uDMTFHS2Pv5Nzk2TlpyTg7pW8aJLA9szcx-lDzKhMhbx2iylxQ5Bb-lkWcfUvK0xC3skY1c04DvxJvBuEjvn-uVuL-9-Xl9l61_fPt-_XWd2RK7Ktvg0AO0Fo2xtlWVgrZWbTX0CjqDTXpWqWJhurZpi7Ye6o0agCpTYlkDmvJKfDrnpnX-HCjOes9xOcSM5A9RY1d0qlPYNAktz6gNPsZAg54C7004aQS9WNc7_de6XqxrUDpZT10fnwccNnvq__W8aE7AlzNA6cwjU9DRMo2Weg5kZ917_u-AJ05TlaY</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Hübner, Kathleen</creator><creator>Grassme, Kathrin S.</creator><creator>Rao, Jyoti</creator><creator>Wenke, Nina K.</creator><creator>Zimmer, Cordula L.</creator><creator>Korte, Laura</creator><creator>Müller, Katja</creator><creator>Sumanas, Saulius</creator><creator>Greber, Boris</creator><creator>Herzog, Wiebke</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1</title><author>Hübner, Kathleen ; Grassme, Kathrin S. ; Rao, Jyoti ; Wenke, Nina K. ; Zimmer, Cordula L. ; Korte, Laura ; Müller, Katja ; Sumanas, Saulius ; Greber, Boris ; Herzog, Wiebke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3194-b1fd007c1aacc7848075874fd809a1687449a112a9767275f5b8f0e4a313501a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>beta Catenin - metabolism</topic><topic>Cell Count</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Lineage</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Erythrocytes - cytology</topic><topic>Erythrocytes - metabolism</topic><topic>Human Embryonic Stem Cells - cytology</topic><topic>Human Embryonic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Mesoderm</topic><topic>Mesoderm - cytology</topic><topic>Mesoderm - metabolism</topic><topic>Models, Biological</topic><topic>Organogenesis</topic><topic>Primitive hematopoiesis</topic><topic>Somites - embryology</topic><topic>Somites - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Vasculogenesis</topic><topic>Wnt reporter</topic><topic>Wnt Signaling Pathway</topic><topic>Wnt3A Protein - metabolism</topic><topic>Zebrafish</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hübner, Kathleen</creatorcontrib><creatorcontrib>Grassme, Kathrin S.</creatorcontrib><creatorcontrib>Rao, Jyoti</creatorcontrib><creatorcontrib>Wenke, Nina K.</creatorcontrib><creatorcontrib>Zimmer, Cordula L.</creatorcontrib><creatorcontrib>Korte, Laura</creatorcontrib><creatorcontrib>Müller, Katja</creatorcontrib><creatorcontrib>Sumanas, Saulius</creatorcontrib><creatorcontrib>Greber, Boris</creatorcontrib><creatorcontrib>Herzog, Wiebke</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hübner, Kathleen</au><au>Grassme, Kathrin S.</au><au>Rao, Jyoti</au><au>Wenke, Nina K.</au><au>Zimmer, Cordula L.</au><au>Korte, Laura</au><au>Müller, Katja</au><au>Sumanas, Saulius</au><au>Greber, Boris</au><au>Herzog, Wiebke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>430</volume><issue>1</issue><spage>142</spage><epage>155</epage><pages>142-155</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2BAC:Venus-Pest)mu288; Tg(14TCF:loxP-STOP-loxP-dGFP)mu202). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. •Wnt3a promotes angioblast specification at the expense of primitive erythropoiesis.•In zebrafish and hESC culture Wnt mediated progenitor specification occurs via Lef1.•Generation of novel zebrafish Wnt signaling reporter with destabilized fluorophores in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28811218</pmid><doi>10.1016/j.ydbio.2017.08.004</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2017-10, Vol.430 (1), p.142-155
issn 0012-1606
1095-564X
language eng
recordid cdi_proquest_miscellaneous_1929898166
source ScienceDirect Journals
subjects Animals
Animals, Genetically Modified
beta Catenin - metabolism
Cell Count
Cell Differentiation
Cell Line
Cell Lineage
Endothelial Cells - cytology
Endothelial Cells - metabolism
Erythrocytes - cytology
Erythrocytes - metabolism
Human Embryonic Stem Cells - cytology
Human Embryonic Stem Cells - metabolism
Humans
Mesoderm
Mesoderm - cytology
Mesoderm - metabolism
Models, Biological
Organogenesis
Primitive hematopoiesis
Somites - embryology
Somites - metabolism
Transcription Factors - metabolism
Vasculogenesis
Wnt reporter
Wnt Signaling Pathway
Wnt3A Protein - metabolism
Zebrafish
Zebrafish - metabolism
Zebrafish Proteins - metabolism
title Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wnt%20signaling%20positively%20regulates%20endothelial%20cell%20fate%20specification%20in%20the%20Fli1a-positive%20progenitor%20population%20via%20Lef1&rft.jtitle=Developmental%20biology&rft.au=H%C3%BCbner,%20Kathleen&rft.date=2017-10-01&rft.volume=430&rft.issue=1&rft.spage=142&rft.epage=155&rft.pages=142-155&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2017.08.004&rft_dat=%3Cproquest_cross%3E1929898166%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3194-b1fd007c1aacc7848075874fd809a1687449a112a9767275f5b8f0e4a313501a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929898166&rft_id=info:pmid/28811218&rfr_iscdi=true