Loading…
Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering
This paper describes a statistical clustering approach toward the classification of cloud types within meteorological satellite imagery, specifically, visible and infrared data. The method is based on the Standard Deviation Limited Adaptive Clustering (SDLAC) procedure, which has been used to classi...
Saved in:
Published in: | Journal of Geophysical Research: Atmospheres 2008-10, Vol.113 (D20), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes a statistical clustering approach toward the classification of cloud types within meteorological satellite imagery, specifically, visible and infrared data. The method is based on the Standard Deviation Limited Adaptive Clustering (SDLAC) procedure, which has been used to classify a variety of features within both polar orbiting and geostationary imagery, including land cover, volcanic ash, dust, and clouds of various types. In this study, the focus is on classifying cumulus clouds of various types (e.g., “fair weather, ”towering, and newly glaciated cumulus, in addition to cumulonimbus). The SDLAC algorithm is demonstrated by showing examples using Geostationary Operational Environmental Satellite (GOES) 12, Meteosat Second Generation's (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and the Moderate Resolution Infrared Spectrometer (MODIS). Results indicate that the method performs well, classifying cumulus similarly between MODIS, SEVIRI, and GOES, despite the obvious channel and resolution differences between these three sensors. The SDLAC methodology has been used in several research activities related to convective weather forecasting, which offers some proof of concept for its value. |
---|---|
ISSN: | 0148-0227 2169-897X 2156-2202 2169-8996 |
DOI: | 10.1029/2008JD010287 |