Loading…

Role of Calcium on Phenolic Compounds and Enzymes Related to Lignification in Soybean (Glycine max L.) Root Growth

Changes in soluble and cell wall bound peroxidases activities, phenylalanine ammonia-lyase activity and phenolic compounds and lignin contents in roots of calcium-treated soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated. Three-day-old soybean seed...

Full description

Saved in:
Bibliographic Details
Published in:Plant growth regulation 2006-05, Vol.49 (1), p.69-76
Main Authors: Teixeira, A.F, Andrade, A. de B, Ferrarese-Filho, O, Ferrarese, M. de L.L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Changes in soluble and cell wall bound peroxidases activities, phenylalanine ammonia-lyase activity and phenolic compounds and lignin contents in roots of calcium-treated soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated. Three-day-old soybean seedlings were cultivated in nutrient solution with or without 0.025-5.0 mM calcium for 24 h. In general, length and fresh and dry weights of roots increased, while activities of enzymes (soluble and cell-wall peroxidases and phenylalanine ammonia-lyase) and phenolic compounds and lignin contents decreased against calcium concentrations. In the absence of calcium, phenylalanine ammonia-lyase and peroxidases activities increased by accumulating phenolic compounds and lignin due to restricted growth of roots. Enhanced calcium supply reduced the production of phenolic compounds and lignification due to low phenylalanine ammonia-lyase and peroxidases activities, reinforcing the essential role of calcium to improve the soybean root growth.
ISSN:0167-6903
1573-5087
DOI:10.1007/s10725-006-0013-7