Loading…

effects of crop rotation and nitrogen fertilization on soil chemical and microbial properties in a Guinea Savanna Alfisol of Nigeria

The impacts of crop rotation and inorganic nitrogen fertilization on soil microbial biomass C (SMBC) and N (SMBN) and water-soluble organic C (WSOC) were studied in a Guinea savanna Alfisol of Nigeria. In 2001, fields of grain legumes (soybean and cowpea), herbaceous legume (Centrosema pascuorum) an...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 2006-03, Vol.281 (1-2), p.97-107
Main Authors: Adeboye, M.K.A, Iwuafor, E.N.O, Agbenin, J.O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impacts of crop rotation and inorganic nitrogen fertilization on soil microbial biomass C (SMBC) and N (SMBN) and water-soluble organic C (WSOC) were studied in a Guinea savanna Alfisol of Nigeria. In 2001, fields of grain legumes (soybean and cowpea), herbaceous legume (Centrosema pascuorum) and a natural fallow were established. In 2002, maize was planted with N fertilizer rates of 0, 20, 40 and 60 kg N ha-1 in a split-plot arrangement fitted to a randomized complete block design with legumes and fallow as main plots and N fertilizer levels as subplots. Surface soil samples were taken at 4 weeks after planting and tasselling stage of the maize. Inorganic N fertilization had no significant (P > 0.05) effect on SMBC, SMBN and WSOC, while crop rotation significantly (P < 0.0001) affected both SMBC and WSOC. These results demonstrate that crop rotation do not necessarily influence the gross soil microbial biomass, but may affect physiologically distinct subcomponent of the microbial biomass. The soils under the various rotations had a predominance of fungi community as indicated by their wide biomass C/N ratio ranging from 9.2 to 20.9 suggesting fungi to be mainly responsible for decomposition in these soils. Soil microbial biomass and WSOC showed significant (P < 0.05) correlation with both soil pH and organic carbon but no relationship with total N. Based on these results, it appears that the soil pH and organic carbon determined the flux of the soil microbial biomass and amount of WSOC in these soils.
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-005-3828-5