Loading…
In vivo imaging of alkaline phosphatase in tumor-bearing mouse model by a promising near-infrared fluorescent probe
Alkaline phosphatase (ALP), one of the important hydrolases, is associated with the progress of many diseases as a well-defined biomarker. Fluorescence imaging of ALP in living organisms is of great importance for biological studies. However, in vivo detection of ALP remains a great challenge becaus...
Saved in:
Published in: | Talanta (Oxford) 2017-12, Vol.175, p.421-426 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alkaline phosphatase (ALP), one of the important hydrolases, is associated with the progress of many diseases as a well-defined biomarker. Fluorescence imaging of ALP in living organisms is of great importance for biological studies. However, in vivo detection of ALP remains a great challenge because current fluorescent probes show short excitation and emission wavelength, which are not desired for in vivo fluorescence imaging. Herein we reported a near-infrared (NIR) fluorescent probe (NALP) for turn-on trapping of ALP activity in living cancer cells and tumors. NALP was composed of a NIR-emitting fluorophore as a reporter and phosphate as a triggered moiety. Phosphate group was directly tethered to the hydroxyl group of fluorophore, which prohibited the fluorescence. The probe exhibited a high selectivity and remarkable fluorescence turn-on response to ALP in aqueous solutions with a detection limit of 0.28U/L. Benefiting from NIR excitation and emission, high contrast on the imaging signal could be achieved in response to endogenous ALP activity. Impressively, not only we successfully used NALP for imaging of endogenous ALP activity in cancer cells, but also, applied it for fluorescence imaging of ALP in tumor tissues and living tumor xenograft in nude mice for the first time. The probe was expected to be promising tool for practical application in disease diagnosis on the roles of ALP in disease.
A promising near-infrared fluorescent probe for turn-on trapping of ALP activity in living cancer cells, tumor tissues and living tumor xenograft in nude mice was first proposed. [Display omitted]
•ALP levels of expression have been routinely used for disease diagnosis.•A new near-infrared fluorescent probe has been developed for detection ALP activity.•The probe is successfully applied for imaging ALP activity in living tumor. |
---|---|
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/j.talanta.2017.04.081 |