Loading…

Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy

Comparison of fine and coarse fractions in terms of sources and dynamics is scarce in southeast Mediterranean countries; differences are relevant because of the importance of natural sources like sea spray and Saharan dust advection, because most of the monitoring networks are limited to PM10. In th...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2018-01, Vol.612, p.202-213
Main Authors: Cesari, D., De Benedetto, G.E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F.M., Marinoni, A., Pennetta, A., Contini, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Comparison of fine and coarse fractions in terms of sources and dynamics is scarce in southeast Mediterranean countries; differences are relevant because of the importance of natural sources like sea spray and Saharan dust advection, because most of the monitoring networks are limited to PM10. In this work, the main seasonal variabilities of sources and processes involving fine and coarse PM (particulate matter) were studied at the Environmental-Climate Observatory of Lecce (Southern Italy). Simultaneous PM2.5 and PM10 samples were collected between July 2013 and July 2014 and chemically analysed to determine concentrations of several species: OC (organic carbon) and EC (elemental carbon) via thermo-optical analysis, 9 major ions via IC, and 23 metals via ICP-MS. Data was processed through mass closure analysis and Positive Matrix Factorization (PMF) receptor model characterizing seasonal variabilities of nine sources contributions. Organic and inorganic secondary aerosol accounts for 43% of PM2.5 and 12% of PM2.5–10 with small seasonal changes. SIA (secondary inorganic aerosol) seasonal pattern is opposite to that of SOC (secondary organic carbon). SOC is larger during the cold period, sulphate (the major contributor to SIA) is larger during summer. Two forms of nitrate were identified: NaNO3, correlated with chloride depletion and aging of sea-spray, mainly present in PM2.5–10; NH4NO3 more abundant in PM2.5. Biomass burning is a relevant source with larger contribution during autumn and winter because of the influence of domestic heating, however, is not negligible in spring and summer, because of the contributions of fires and agricultural practices. Mass closure analysis and PMF results identify two soil sources: crustal associated to long range transport and carbonates associated to local resuspended dust. Both sources contributes to the coarse fraction and have different dynamics with crustal source contributing mainly in high winds from SE conditions and carbonates during high winds from North direction. [Display omitted] •Composition and sources of PM2.5 and PM2.5–10 are investigated in South-eastern Italy.•Secondary organic and inorganic components were 43% of PM2.5 with opposite seasonal trends.•Two forms of nitrate were observed: sodium nitrate and ammonium nitrate (only in winter).•PMF and mass-closure identified two soil sources accounting for 29% of PM2.5–10.•Biomass burning is an important source at the urban background site even during warm
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.08.230