Loading…

Effect of lycopene and β-carotene on peroxynitrite-mediated cellular modifications

Peroxynitrite formed by the reaction of superoxide and nitric oxide is a highly reactive species with a role in various pathological processes such as cancer, chronic inflammation, and cardiovascular and neurological diseases. In the present study, the effect of the carotenoids, lycopene and β-carot...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology and applied pharmacology 2006-09, Vol.215 (3), p.330-340
Main Authors: Muzandu, Kaampwe, Ishizuka, Mayumi, Sakamoto, Kentaro Q., Shaban, Zein, El Bohi, Khlood, Kazusaka, Akio, Fujita, Shoichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peroxynitrite formed by the reaction of superoxide and nitric oxide is a highly reactive species with a role in various pathological processes such as cancer, chronic inflammation, and cardiovascular and neurological diseases. In the present study, the effect of the carotenoids, lycopene and β-carotene, on peroxynitrite-mediated modifications in plasmid DNA as well as cellular DNA and proteins were investigated. In pUC18 plasmid DNA, these carotenoids strongly inhibited DNA strand breaks caused by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1). SIN-1 was also used to determine effects on DNA damage and protein tyrosine nitration in Chinese hamster lung fibroblasts. SIN-1 dose-dependently increased nitration of proteins in cells above basal levels as determined by Western blotting. This nitration was inhibited in the presence of the uric acid as well as lycopene. Physiological concentrations (0.31–10 μM) of lycopene and β-carotene also had protective effects on DNA damage, as measured by the comet assay. Lycopene significantly reduced DNA damage particularly, in the median range of concentrations (2.5 μM). The protective effects of lycopene and β-carotene could be due to their scavenging of reactive oxygen (ROS) and/or nitrogen species (RNS) as they reduce the amount of intracellular ROS/RNS produced following treatment with SIN-1 by as much as 47.5% and 42.4%, respectively. The results obtained in this study suggest that carotenoids may alleviate some of the deleterious effects of peroxynitrite and possibly other reactive nitrogen species as well in vivo.
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2006.03.006