Loading…
Chukar Watering Patterns and Water Site Selection
We evaluated chukar (Alectoris chukar) watering patterns as well as habitat variables influencing water site selection in western Utah. Motion-sensing cameras and chukar dropping counts were primary techniques to evaluate watering patterns. We took vegetative and other habitat measurements at each w...
Saved in:
Published in: | Rangeland ecology & management 2007-11, Vol.60 (6), p.559-565 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We evaluated chukar (Alectoris chukar) watering patterns as well as habitat variables influencing water site selection in western Utah. Motion-sensing cameras and chukar dropping counts were primary techniques to evaluate watering patterns. We took vegetative and other habitat measurements at each water source (n = 43) to discriminate use from nonuse sites using logistic regression. Chukars watered during daylight hours with a modal hour from 1200 hours to 1300 hours daylight savings time. Annual patterns suggest limited use of water sources from November to May with first observed visits occurring in June and last observed visits in October. Shrub canopy cover was the only variable to discriminate between site types (P < 0.01). Cross validation showed a predictive success rate of 84%. Significant differences were found between use and nonuse sites in terms of security cover (P < 0.01), but not total cover (P > 0.05). Chukars seem to have a loose shrub canopy threshold near 11% that is likely due to predation risk. Water sources meeting this threshold received use, whereas those not meeting this threshold did not. Increasing shrub canopy cover above 11% did not translate into increased water source use. Managers might want to consider annual patterns when setting hunt season timing and structure as well as judging sites for new water developments based on shrub canopy cover. More generally, these results suggest a behavioral constraint on the use of water sources as a function of predation risk—we should expect other species to demonstrate similar behavioral constraints. These constraints must be considered in any effort to determine benefits or impacts of water developments. |
---|---|
ISSN: | 1550-7424 1551-5028 1551-5028 |
DOI: | 10.2111/06-040R4.1 |