Loading…
Quinoa Starch Characteristics and Their Correlations with the Texture Profile Analysis (TPA) of Cooked Quinoa
Starch characteristics significantly influence the functionality and end‐use quality of cereals and pseudo‐cereals. This study examined the composition and properties of starch from 11 pure varieties and 2 commercial samples of quinoa in relationship to the texture of cooked quinoa. Nearly all starc...
Saved in:
Published in: | Journal of food science 2017-10, Vol.82 (10), p.2387-2395 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Starch characteristics significantly influence the functionality and end‐use quality of cereals and pseudo‐cereals. This study examined the composition and properties of starch from 11 pure varieties and 2 commercial samples of quinoa in relationship to the texture of cooked quinoa. Nearly all starch properties and characteristics differed among these samples. Results showed that total starch content of seeds ranged from 53.2 to 75.1 g/100 g apparent amylose content ranged from 2.7% to 16.9%; total amylose ranged from 4.7% to 17.3%; and the degree of amylose–lipid complex ranged from 3.4% to 43.3%. Amylose leaching ranged from 31 mg/100 g starch in “Japanese Strain” to 862 mg/100 g starch in “49ALC.” “Japanese Strain” starch also exhibited the highest water solubility (4.5%) and the lowest swelling power (17). α‐Amylase activity in “1ESP,” “Col.#6197,” “Japanese Strain,” “QQ63,” “Yellow Commercial,” and “Red Commercial” (0.03 to 0.09 CU) were significantly lower than the levels of the other quinoa samples (0.20 to 1.16 CU). Additionally, gel texture, thermal properties, and pasting properties of quinoa starches were investigated. Lastly, correlation analysis showed that the quinoa samples with higher amylose content tended to yield harder, stickier, more cohesive, more gummy, and more chewy texture after cooking. A higher degree of amylose–lipid complex and amylose leaching were associated with softer and less chewy cooked quinoa TPA texture. Higher starch enthalpy correlated with firmer, more adhesive, more cohesive, and chewier texture. In sum, starch plays a significant role in the texture of cooked quinoa.
Practical Application
The research determined starch characteristics among a diverse set of pure quinoa varieties and commercial samples, and identified the relationships between starch properties and cooked quinoa texture. The results can help breeders and food manufacturers to understand better the relationships among quinoa starch characteristics, cooked quinoa texture, and the best use of different cultivars. |
---|---|
ISSN: | 0022-1147 1750-3841 |
DOI: | 10.1111/1750-3841.13848 |