Loading…
All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development
In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics...
Saved in:
Published in: | Langmuir 2017-10, Vol.33 (39), p.10107-10117 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23 |
container_end_page | 10117 |
container_issue | 39 |
container_start_page | 10107 |
container_title | Langmuir |
container_volume | 33 |
creator | Hann, Sarah D. Stebe, Kathleen J. Lee, Daeyeon |
description | In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified. |
doi_str_mv | 10.1021/acs.langmuir.7b02237 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1937517383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937517383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EoqXwDxDykUuKn7XDLSqvSkVceo8cxwZXTlLspMC_x1Vbjpz2sDOzOx8A1xhNMSL4Tuk49ap9bwYXpqJChFBxAsaYE5RxScQpGCPBaCbYjI7ARYxrhFBOWX4ORkRKSRAjY2AL77PiczDdEGERo2kq70yEW6fgou1NsEo75eG8azbefKvede09XHVfKtSwCL2zbr833kPV1vDV6dC1Tn8Y-GC2xnebxrT9JTizykdzdZgTsHp6XM1fsuXb82JeLDNFmewzyRVnM6StVALXdoZywaTgOudSUEoQ5VwTTLDNhc5FsiAjjKnwTCHLakIn4HYfuwld6hT7snFRp9dUuytY4pwKjgWVNEnZXprejTEYW26Ca1T4KTEqd4DLBLg8Ai4PgJPt5nBhqBpT_5mORJMA7QU7-7obQpv6_p_5C7V2irA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937517383</pqid></control><display><type>article</type><title>All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hann, Sarah D. ; Stebe, Kathleen J. ; Lee, Daeyeon</creator><creatorcontrib>Hann, Sarah D. ; Stebe, Kathleen J. ; Lee, Daeyeon</creatorcontrib><description>In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.7b02237</identifier><identifier>PMID: 28882042</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Artificial Cells ; Thermodynamics ; Water</subject><ispartof>Langmuir, 2017-10, Vol.33 (39), p.10107-10117</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23</citedby><cites>FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23</cites><orcidid>0000-0003-0510-0513 ; 0000-0001-6679-290X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28882042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hann, Sarah D.</creatorcontrib><creatorcontrib>Stebe, Kathleen J.</creatorcontrib><creatorcontrib>Lee, Daeyeon</creatorcontrib><title>All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.</description><subject>Animals</subject><subject>Artificial Cells</subject><subject>Thermodynamics</subject><subject>Water</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EoqXwDxDykUuKn7XDLSqvSkVceo8cxwZXTlLspMC_x1Vbjpz2sDOzOx8A1xhNMSL4Tuk49ap9bwYXpqJChFBxAsaYE5RxScQpGCPBaCbYjI7ARYxrhFBOWX4ORkRKSRAjY2AL77PiczDdEGERo2kq70yEW6fgou1NsEo75eG8azbefKvede09XHVfKtSwCL2zbr833kPV1vDV6dC1Tn8Y-GC2xnebxrT9JTizykdzdZgTsHp6XM1fsuXb82JeLDNFmewzyRVnM6StVALXdoZywaTgOudSUEoQ5VwTTLDNhc5FsiAjjKnwTCHLakIn4HYfuwld6hT7snFRp9dUuytY4pwKjgWVNEnZXprejTEYW26Ca1T4KTEqd4DLBLg8Ai4PgJPt5nBhqBpT_5mORJMA7QU7-7obQpv6_p_5C7V2irA</recordid><startdate>20171003</startdate><enddate>20171003</enddate><creator>Hann, Sarah D.</creator><creator>Stebe, Kathleen J.</creator><creator>Lee, Daeyeon</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0510-0513</orcidid><orcidid>https://orcid.org/0000-0001-6679-290X</orcidid></search><sort><creationdate>20171003</creationdate><title>All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development</title><author>Hann, Sarah D. ; Stebe, Kathleen J. ; Lee, Daeyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Artificial Cells</topic><topic>Thermodynamics</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hann, Sarah D.</creatorcontrib><creatorcontrib>Stebe, Kathleen J.</creatorcontrib><creatorcontrib>Lee, Daeyeon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hann, Sarah D.</au><au>Stebe, Kathleen J.</au><au>Lee, Daeyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-10-03</date><risdate>2017</risdate><volume>33</volume><issue>39</issue><spage>10107</spage><epage>10117</epage><pages>10107-10117</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28882042</pmid><doi>10.1021/acs.langmuir.7b02237</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0510-0513</orcidid><orcidid>https://orcid.org/0000-0001-6679-290X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2017-10, Vol.33 (39), p.10107-10117 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1937517383 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Artificial Cells Thermodynamics Water |
title | All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-Aqueous%20Assemblies%20via%20Interfacial%20Complexation:%20Toward%20Artificial%20Cell%20and%20Microniche%20Development&rft.jtitle=Langmuir&rft.au=Hann,%20Sarah%20D.&rft.date=2017-10-03&rft.volume=33&rft.issue=39&rft.spage=10107&rft.epage=10117&rft.pages=10107-10117&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.7b02237&rft_dat=%3Cproquest_cross%3E1937517383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1937517383&rft_id=info:pmid/28882042&rfr_iscdi=true |