Loading…

All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development

In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2017-10, Vol.33 (39), p.10107-10117
Main Authors: Hann, Sarah D., Stebe, Kathleen J., Lee, Daeyeon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23
cites cdi_FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23
container_end_page 10117
container_issue 39
container_start_page 10107
container_title Langmuir
container_volume 33
creator Hann, Sarah D.
Stebe, Kathleen J.
Lee, Daeyeon
description In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)­assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.
doi_str_mv 10.1021/acs.langmuir.7b02237
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1937517383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937517383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EoqXwDxDykUuKn7XDLSqvSkVceo8cxwZXTlLspMC_x1Vbjpz2sDOzOx8A1xhNMSL4Tuk49ap9bwYXpqJChFBxAsaYE5RxScQpGCPBaCbYjI7ARYxrhFBOWX4ORkRKSRAjY2AL77PiczDdEGERo2kq70yEW6fgou1NsEo75eG8azbefKvede09XHVfKtSwCL2zbr833kPV1vDV6dC1Tn8Y-GC2xnebxrT9JTizykdzdZgTsHp6XM1fsuXb82JeLDNFmewzyRVnM6StVALXdoZywaTgOudSUEoQ5VwTTLDNhc5FsiAjjKnwTCHLakIn4HYfuwld6hT7snFRp9dUuytY4pwKjgWVNEnZXprejTEYW26Ca1T4KTEqd4DLBLg8Ai4PgJPt5nBhqBpT_5mORJMA7QU7-7obQpv6_p_5C7V2irA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937517383</pqid></control><display><type>article</type><title>All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hann, Sarah D. ; Stebe, Kathleen J. ; Lee, Daeyeon</creator><creatorcontrib>Hann, Sarah D. ; Stebe, Kathleen J. ; Lee, Daeyeon</creatorcontrib><description>In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)­assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.7b02237</identifier><identifier>PMID: 28882042</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Artificial Cells ; Thermodynamics ; Water</subject><ispartof>Langmuir, 2017-10, Vol.33 (39), p.10107-10117</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23</citedby><cites>FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23</cites><orcidid>0000-0003-0510-0513 ; 0000-0001-6679-290X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28882042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hann, Sarah D.</creatorcontrib><creatorcontrib>Stebe, Kathleen J.</creatorcontrib><creatorcontrib>Lee, Daeyeon</creatorcontrib><title>All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)­assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.</description><subject>Animals</subject><subject>Artificial Cells</subject><subject>Thermodynamics</subject><subject>Water</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EoqXwDxDykUuKn7XDLSqvSkVceo8cxwZXTlLspMC_x1Vbjpz2sDOzOx8A1xhNMSL4Tuk49ap9bwYXpqJChFBxAsaYE5RxScQpGCPBaCbYjI7ARYxrhFBOWX4ORkRKSRAjY2AL77PiczDdEGERo2kq70yEW6fgou1NsEo75eG8azbefKvede09XHVfKtSwCL2zbr833kPV1vDV6dC1Tn8Y-GC2xnebxrT9JTizykdzdZgTsHp6XM1fsuXb82JeLDNFmewzyRVnM6StVALXdoZywaTgOudSUEoQ5VwTTLDNhc5FsiAjjKnwTCHLakIn4HYfuwld6hT7snFRp9dUuytY4pwKjgWVNEnZXprejTEYW26Ca1T4KTEqd4DLBLg8Ai4PgJPt5nBhqBpT_5mORJMA7QU7-7obQpv6_p_5C7V2irA</recordid><startdate>20171003</startdate><enddate>20171003</enddate><creator>Hann, Sarah D.</creator><creator>Stebe, Kathleen J.</creator><creator>Lee, Daeyeon</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0510-0513</orcidid><orcidid>https://orcid.org/0000-0001-6679-290X</orcidid></search><sort><creationdate>20171003</creationdate><title>All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development</title><author>Hann, Sarah D. ; Stebe, Kathleen J. ; Lee, Daeyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Artificial Cells</topic><topic>Thermodynamics</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hann, Sarah D.</creatorcontrib><creatorcontrib>Stebe, Kathleen J.</creatorcontrib><creatorcontrib>Lee, Daeyeon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hann, Sarah D.</au><au>Stebe, Kathleen J.</au><au>Lee, Daeyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-10-03</date><risdate>2017</risdate><volume>33</volume><issue>39</issue><spage>10107</spage><epage>10117</epage><pages>10107-10117</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)­assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28882042</pmid><doi>10.1021/acs.langmuir.7b02237</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0510-0513</orcidid><orcidid>https://orcid.org/0000-0001-6679-290X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-10, Vol.33 (39), p.10107-10117
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1937517383
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Artificial Cells
Thermodynamics
Water
title All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-Aqueous%20Assemblies%20via%20Interfacial%20Complexation:%20Toward%20Artificial%20Cell%20and%20Microniche%20Development&rft.jtitle=Langmuir&rft.au=Hann,%20Sarah%20D.&rft.date=2017-10-03&rft.volume=33&rft.issue=39&rft.spage=10107&rft.epage=10117&rft.pages=10107-10117&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.7b02237&rft_dat=%3Cproquest_cross%3E1937517383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-85a5460cf8a71df60974875c95873320355c2121f97c973480e7eeb16a0f4d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1937517383&rft_id=info:pmid/28882042&rfr_iscdi=true