Loading…

Transcriptomic and Functional Analyses on the Effects of Dioxin on Insulin Secretion of Pancreatic Islets and β‑Cells

In this study, transcriptomic and Ingenuity Pathway Analysis (IPA) underlined that an ex-vivo TCDD treatment (0.1 nM) stimulated insulin-release in mouse pancreatic islets via the effect on the Akt-mTOR-p70S6K, AMPK and ERK1/2 pathways. Functional studies using both ex-vivo islets and the mouse β-ce...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2017-10, Vol.51 (19), p.11390-11400
Main Authors: Lai, Keng Po, Wan, Hin Ting, Ng, Alice Hoi-Man, Li, Jing Woei, Chan, Ting Fung, Wong, Chris Kong-Chu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, transcriptomic and Ingenuity Pathway Analysis (IPA) underlined that an ex-vivo TCDD treatment (0.1 nM) stimulated insulin-release in mouse pancreatic islets via the effect on the Akt-mTOR-p70S6K, AMPK and ERK1/2 pathways. Functional studies using both ex-vivo islets and the mouse β-cell-line (Min-6) validated the stimulatory effects of TCDD (0.1 and 1 nM) on basal-insulin secretion. At 0.1 nM TCDD treatment on Min-6, Western blot analysis showed activation of ERK1/2 and decreased expression of pyruvate dehydrogenase kinase (PDK). A reduction of PDK expression is associated with an increase of pyruvate dehydrogenase flux. This observation was supported by the detection of significantly higher cellular ATP levels, an increase of glucose-stimulated-insulin-secretion (GSIS), and an inhibition of the AMPK pathway. At 1 nM TCDD treatment on Min-6, significant inhibitions of the Akt-mTOR pathway, cellular ATP production, and GSIS were evident. The experimental studies in Min-6 supported the IPA of transcriptomic data in pancreatic islets. Collectively, TCDD treatment caused an elevated basal-insulin release in both islets and β-cell cultures. Moreover, our data revealed that the modulation of the Akt-mTOR-p70S6K, AMPK and ERK1/2 pathways might be an important component of the mechanism for the TCDD-perturbing effects on ATP production in β-cells in affecting insulin secretion.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.7b02830